Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 1;70(Pt 9):o953. doi: 10.1107/S160053681401664X

Crystal structure of 2-ethyl­quinazoline-4(3H)-thione

Mohammed B Alshammari a, Keith Smith b, Amany S Hegazy b, Benson M Kariuki b,, Gamal A El-Hiti c,*
PMCID: PMC4186129  PMID: 25309275

Abstract

In the title compound, C10H10N2S, all non-H atoms are almost coplanar [maximum deviation = 0.103 (1) Å]. In the crystal, N—H⋯S inter­actions form R 2 2(8) rings linking pairs of mol­ecules related by inversion. The mol­ecular pairs are stacked along [100]. A herringbone arrangement of pairs in the [010] direction forms layers parallel to (010).

Keywords: crystal structure, N—H⋯S inter­actions, quinazoline-4(3H)-thione, hydrogen-bonded dimers, herringbone arrangement

Related literature  

For the synthesis of quinazoline-4(3H)-thio­nes, see: Bogert et al. (1903); Zoltewicz & Sharpless (1976); Segarra et al. (1998); El-Hiti (2004); Ozturk et al. (2007); El-Hiti et al. (2011).graphic file with name e-70-0o953-scheme1.jpg

Experimental  

Crystal data  

  • C10H10N2S

  • M r = 190.26

  • Orthorhombic, Inline graphic

  • a = 5.8231 (3) Å

  • b = 14.3214 (6) Å

  • c = 21.7365 (8) Å

  • V = 1812.71 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 150 K

  • 0.41 × 0.24 × 0.15 mm

Data collection  

  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) T min = 0.780, T max = 1.000

  • 7795 measured reflections

  • 2240 independent reflections

  • 1973 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.087

  • S = 1.03

  • 2240 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S160053681401664X/xu5804sup1.cif

e-70-0o953-sup1.cif (295.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401664X/xu5804Isup2.hkl

e-70-0o953-Isup2.hkl (123.3KB, hkl)

Supporting information file. DOI: 10.1107/S160053681401664X/xu5804Isup3.cml

. DOI: 10.1107/S160053681401664X/xu5804fig1.tif

A mol­ecule of the title compound showing atom labels and 50% probability displacement ellipsoids for non-H atoms.

. DOI: 10.1107/S160053681401664X/xu5804fig2.tif

Crystal structure packing showing N—H⋯S contacts as dotted lines.

CCDC reference: 1014729

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.88 2.53 3.3854 (11) 166

Symmetry code: (i) Inline graphic.

Acknowledgments

This project was supported by the Deanship of Scientific Research at Salman bin Abdulaziz University under the research project 2013/01/134.

supplementary crystallographic information

S1. Chemical context

S2. Structural commentary

The 2-ethyl-3H-quinazoline-4-thione molecule (Fig 1) is almost planer (apart from the ethyl hydrogens) with the ethyl group being twisted from the quinazoline-4-thione plane by 8.7 (2)°. N—H···S inter­actions form R22(8) rings to link pairs of molecules related by inversion. The pairs of molecules are stacked parallel to the a-axis (Fig 2). Adjacent pairs pack in a herring bone arrangement in the [010] direction to form layers parallel to the (010) plane. 2-(Substituted alkyl)-3H-quinazoline-4-thione derivatives can be obtained from double li­thia­tion of 2-alkyl-3H-quinazoline-4-thio­nes followed by reactions with electrophiles, including alkyl iodides, at low temperature in anhydrous THF (El-Hiti, 2004). Also, 3H-quinazoline-4-thio­nes are produced from the corresponding 3H-quinazoline-4-ones using phospho­rus penta­sulfide (Bogert et al., 1903; Ozturk et al., 2007; El-Hiti et al., 2011) or Lawesson's reagent (Segarra et al., 1998). 3H-Quinazoline-4-thio­nes have also been synthesized in one-step from reaction of 2-amino­benzo­nitriles and thio­amides in the presence of hydrogen bromide in various solvents on a steam bath for 1–4 h (Zoltewicz & Sharpless, 1976).

S3. Supra­molecular features

S4. Database survey

S5. Synthesis and crystallization

2-Ethyl-3H-quinazoline-4-thione was obtained in 92% yield from double li­thia­tion of 2-methyl-3H-quinazoline-4-thione with n-butyl­lithium at 78 οC in anhydrous THF under nitro­gen followed by reaction with iodo­methane (El-Hiti, 2004). Crystallization from methanol gave the title compound as yellow crystals. The NMR and low and high resolution mass spectra for the title compound were consistent with those reported (El-Hiti, 2004).

S6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed in calculated positions with C—H = 0.95 and 0.98Å and refined in riding mode, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for aromatic H atoms

Figures

Fig. 1.

Fig. 1.

A molecule of the title compound showing atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Crystal structure packing showing N—H···S contacts as dotted lines.

Crystal data

C10H10N2S Dx = 1.394 Mg m3
Mr = 190.26 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 3617 reflections
a = 5.8231 (3) Å θ = 3.9–29.3°
b = 14.3214 (6) Å µ = 0.31 mm1
c = 21.7365 (8) Å T = 150 K
V = 1812.71 (14) Å3 Plate, yellow
Z = 8 0.41 × 0.24 × 0.15 mm
F(000) = 800

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer 2240 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1973 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.020
ω scans θmax = 29.8°, θmin = 3.0°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) h = −6→7
Tmin = 0.780, Tmax = 1.000 k = −19→14
7795 measured reflections l = −23→29

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.7981P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2240 reflections Δρmax = 0.30 e Å3
119 parameters Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7433 (2) 0.57478 (9) 0.62537 (6) 0.0185 (3)
C2 0.6649 (2) 0.44643 (8) 0.55604 (5) 0.0178 (2)
C3 0.4705 (2) 0.42557 (8) 0.59550 (5) 0.0177 (3)
C4 0.4368 (2) 0.48131 (8) 0.64832 (5) 0.0183 (3)
C5 0.3171 (2) 0.35262 (9) 0.58239 (6) 0.0209 (3)
H5 0.3379 0.3158 0.5465 0.025*
C6 0.1366 (2) 0.33425 (9) 0.62146 (6) 0.0236 (3)
H6 0.0337 0.2845 0.6127 0.028*
C7 0.1046 (2) 0.38917 (9) 0.67440 (6) 0.0240 (3)
H7 −0.0197 0.3760 0.7013 0.029*
C8 0.2513 (2) 0.46175 (9) 0.68761 (6) 0.0218 (3)
H8 0.2272 0.4987 0.7233 0.026*
C9 0.8998 (2) 0.65696 (9) 0.63452 (6) 0.0227 (3)
H9A 0.8734 0.7023 0.6009 0.027*
H9B 1.0609 0.6354 0.6316 0.027*
C10 0.8668 (3) 0.70632 (9) 0.69567 (6) 0.0246 (3)
H10A 0.7058 0.7252 0.7000 0.037*
H10B 0.9652 0.7618 0.6972 0.037*
H10C 0.9080 0.6639 0.7293 0.037*
N1 0.78973 (18) 0.52156 (7) 0.57402 (5) 0.0188 (2)
H1 0.9086 0.5374 0.5513 0.023*
N2 0.57662 (19) 0.55697 (7) 0.66273 (5) 0.0199 (2)
S1 0.73978 (6) 0.38502 (2) 0.49367 (2) 0.02214 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0210 (6) 0.0177 (6) 0.0169 (6) 0.0022 (5) −0.0006 (4) −0.0010 (5)
C2 0.0203 (6) 0.0164 (5) 0.0166 (5) 0.0039 (5) −0.0026 (5) 0.0008 (4)
C3 0.0194 (6) 0.0171 (6) 0.0167 (5) 0.0027 (5) −0.0019 (5) 0.0020 (4)
C4 0.0197 (6) 0.0178 (6) 0.0172 (5) 0.0019 (5) −0.0012 (4) 0.0010 (5)
C5 0.0237 (7) 0.0189 (6) 0.0202 (6) 0.0008 (5) −0.0032 (5) −0.0006 (5)
C6 0.0238 (7) 0.0212 (6) 0.0258 (6) −0.0033 (5) −0.0029 (5) 0.0012 (5)
C7 0.0213 (7) 0.0264 (7) 0.0244 (6) −0.0013 (5) 0.0028 (5) 0.0038 (5)
C8 0.0242 (7) 0.0226 (6) 0.0186 (6) 0.0015 (5) 0.0016 (5) 0.0002 (5)
C9 0.0238 (7) 0.0208 (6) 0.0233 (6) −0.0033 (5) 0.0041 (5) −0.0040 (5)
C10 0.0292 (7) 0.0233 (6) 0.0214 (6) −0.0047 (5) 0.0001 (5) −0.0040 (5)
N1 0.0188 (5) 0.0194 (5) 0.0182 (5) −0.0003 (4) 0.0030 (4) −0.0024 (4)
N2 0.0220 (6) 0.0191 (5) 0.0187 (5) −0.0006 (4) 0.0015 (4) −0.0012 (4)
S1 0.0244 (2) 0.02191 (18) 0.02011 (17) 0.00029 (12) 0.00293 (12) −0.00599 (12)

Geometric parameters (Å, º)

C1—N2 1.2908 (16) C6—C7 1.4061 (19)
C1—N1 1.3784 (16) C6—H6 0.9500
C1—C9 1.5017 (18) C7—C8 1.3757 (19)
C2—N1 1.3560 (16) C7—H7 0.9500
C2—C3 1.4514 (17) C8—H8 0.9500
C2—S1 1.6737 (12) C9—C10 1.5177 (17)
C3—C5 1.4038 (18) C9—H9A 0.9900
C3—C4 1.4119 (16) C9—H9B 0.9900
C4—N2 1.3910 (16) C10—H10A 0.9800
C4—C8 1.4054 (18) C10—H10B 0.9800
C5—C6 1.3766 (19) C10—H10C 0.9800
C5—H5 0.9500 N1—H1 0.8800
N2—C1—N1 123.21 (12) C6—C7—H7 119.6
N2—C1—C9 121.86 (11) C7—C8—C4 120.08 (12)
N1—C1—C9 114.92 (11) C7—C8—H8 120.0
N1—C2—C3 114.27 (11) C4—C8—H8 120.0
N1—C2—S1 120.71 (10) C1—C9—C10 113.84 (11)
C3—C2—S1 125.01 (10) C1—C9—H9A 108.8
C5—C3—C4 119.83 (12) C10—C9—H9A 108.8
C5—C3—C2 121.97 (11) C1—C9—H9B 108.8
C4—C3—C2 118.19 (11) C10—C9—H9B 108.8
N2—C4—C8 117.93 (11) H9A—C9—H9B 107.7
N2—C4—C3 122.83 (11) C9—C10—H10A 109.5
C8—C4—C3 119.22 (12) C9—C10—H10B 109.5
C6—C5—C3 120.19 (12) H10A—C10—H10B 109.5
C6—C5—H5 119.9 C9—C10—H10C 109.5
C3—C5—H5 119.9 H10A—C10—H10C 109.5
C5—C6—C7 119.94 (12) H10B—C10—H10C 109.5
C5—C6—H6 120.0 C2—N1—C1 124.53 (11)
C7—C6—H6 120.0 C2—N1—H1 117.7
C8—C7—C6 120.73 (13) C1—N1—H1 117.7
C8—C7—H7 119.6 C1—N2—C4 116.89 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···S1i 0.88 2.53 3.3854 (11) 166

Symmetry code: (i) −x+2, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5804).

References

  1. Agilent (2014). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Bogert, M. T., Breneman, H. C. & Hand, W. F. (1903). J. Am. Chem. Soc. 25, 372–380.
  3. El-Hiti, G. A. (2004). Synthesis, pp. 363–368.
  4. El-Hiti, G. A., Hussain, A., Hegazy, A. S. & Alotaibi, M. H. (2011). J. Sulfur Chem. 32, 361–395.
  5. Ozturk, T., Ertas, E. & Mert, O. (2007). Chem. Rev. 107, 5210–5278. [DOI] [PubMed]
  6. Segarra, V., Crespo, M. I., Pujol, F., Beleta, J., Doménech, T., Miralpeix, M., Palacios, J. M., Castro, A. & Martinez, A. (1998). Bioorg. Med. Chem. Lett. 8, 505–510. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Zoltewicz, J. A. & Sharpless, T. W. (1976). J. Org. Chem. 32, 2681–2685.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S160053681401664X/xu5804sup1.cif

e-70-0o953-sup1.cif (295.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401664X/xu5804Isup2.hkl

e-70-0o953-Isup2.hkl (123.3KB, hkl)

Supporting information file. DOI: 10.1107/S160053681401664X/xu5804Isup3.cml

. DOI: 10.1107/S160053681401664X/xu5804fig1.tif

A mol­ecule of the title compound showing atom labels and 50% probability displacement ellipsoids for non-H atoms.

. DOI: 10.1107/S160053681401664X/xu5804fig2.tif

Crystal structure packing showing N—H⋯S contacts as dotted lines.

CCDC reference: 1014729

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES