Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 23;70(Pt 9):142–144. doi: 10.1107/S1600536814017978

Crystal structure of bis­(acetato-κO)bis­(pyridine-2-carboxamide oxime-κ2 N,N′)cadmium ethanol disolvate

Jiyong Liu a,*
PMCID: PMC4186130  PMID: 25309163

In this CdII complex incorporating two monodentate acetate groups and two N,N′-chelating pyridine-2-carboxamide oxime ligands, mol­ecules are assembled into chains along the c axis via N—H⋯O hydrogen bonding. The resulting chains are further assembled by ethanol solvent mol­ecules into a three-dimensional supermolecular structure.

Keywords: crystal structure, CdII complex, acetate, pyridine-2-carboxamide oxime, N—H⋯O hydrogen bonding

Abstract

In the title compound, [Cd(CH3COO)2(C6H7N3O)2]·2C2H5OH, the CdII atom, which lies on a twofold rotation axis, is coordinated by two monodentate acetate groups and two N,N′-chelating pyridine-2-carboxamide oxime ligands, leading to a distorted octahedral coordination sphere. The mononuclear complex mol­ecules are assembled into chains along the c-axis direction via N—H⋯O hydrogen-bonding inter­actions. These chains are further assembled by O—H⋯O hydrogen bonds involving the ethanol solvent mol­ecules into a three-dimensional supramolecular structure.

Chemical context  

The monoanions of simple of 2-pyridyl oximes, (py)C(R)NOH (R = a non-coordinating group, e.g. H, Me, Ph etc.), are remarkable sources of homo- and heterometallic complexes with novel structures and inter­esting physical properties (Miyasaka et al., 2003; Stamatatos et al., 2007). A logical extension of such studies is the investigation of the coordin­ation chemistry of analogous organic mol­ecules in which the non-donor R group is replaced by a donor group such as pyridine, cyano etc. (Alcazar et al., 2013; Escuer et al., 2011). When R is an amino group, the resulting ligand is pyridine-2-amidoxime, (py)C(NH2)NOH, which belongs to the class of amidoximes. The presence of the amine functionality is expected to alter the coordination behaviour of this ligand in comparison with that of the (py)C(R)NOH (R = a non-coordinating group) ligands. The characteristics that differentiate the amino group are its coordination capability, potential for deprotonation, different electronic properties and hydrogen-bonding effects. graphic file with name e-70-00142-scheme1.jpg

The present work reports the first use of (py)C(NH2)NOH in CdII coordination chemistry and describes the synthesis and structure of the mononuclear title compound.

Structural commentary  

The title complex consists of isolated [Cd(O2CMe)2{(py)C(NH2)NOH}2] complex mol­ecules and ethanol solvent mol­ecules. The central CdII atom is located on a twofold rotation axis (Wyckoff site 4e). The CdII atom is coordinated by two monodentate MeCO2 groups and two N,N′-chelating (py)C(NH2)NOH ligands (Fig. 1 and Table 1). The (py)C(NH2)NOH donor atoms are the N atoms of the neutral oxime and the 2-pyridyl groups. The amino N atom of each ligand remains uncoord­in­ating, albeit participating in an extensive inter­molecular hydrogen-bonding network. Each of the two coordinating (py)C(NH2)NOH mol­ecules results in the formation of a five-membered chelate ring including a CdII atom, in which the chelate angle N1—Cd1—N1 [86.7 (2)°] is noteably larger than comparable angles found in [Cd(HCO2)2(pya)2] (pya = pyridine-2-aldoxime; Croitor et al., 2013).

Figure 1.

Figure 1

The title compound with displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) −x + 1, y, −z + Inline graphic.]

Table 1. Selected bond lengths (Å).

Cd1—O2 2.288 (3) Cd1—N3 2.315 (3)
Cd1—N1 2.413 (4)    

Supra­molecular features  

Table 2 shows the hydrogen-bonding inter­actions. There are two strong symmetry-related intra­molecular hydrogen bonds between the unbound oxime (–O1—H1) group and uncoordinating acetate atom O3. Uncoordinating amino atom N2 acts as a donor for two hydrogen bonds; in one of these, the acceptor is coordinating atom O2 from the acetate group, which leads to the formation of chains running along the c-axis direction (Fig. 2). These chains are further linked into a three-dimensional network by hydrogen bonds involving the ethanol solvent mol­ecule (O4), acting as a donor for the uncoord­in­ating carboxyl­ate O atom (O3) and as an acceptor for the remaining amino H atom H2B (Table 2 and Fig. 3).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.85 (1) 1.86 (4) 2.600 (5) 145 (6)
N2—H2A⋯O2ii 0.85 (1) 2.20 (2) 3.040 (5) 169 (5)
N2—H2B⋯O4 0.85 (1) 2.45 (4) 3.113 (6) 136 (5)
O4—H4A⋯O3iii 0.85 (1) 2.09 (3) 2.903 (5) 161 (8)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

The hydrogen-bonded chain along the c axis. Dashed lines represent hydrogen bonds and H atoms bonded to C atoms have been omitted for clarity.

Figure 3.

Figure 3

The crystal structure projected along the c axis. Dashed lines represent hydrogen bonds and H atoms bonded to C atoms have been omitted for clarity.

Synthesis and crystallization  

A stoichiometric amount of (py)C(NH2)NOH and Cd(OAc)2·3H2O in a 2:1 ratio was dissolved in 20 ml ethanol and 10 ml DMF, and the solution left to evaporate slowly to afford colourless block-like crystals after three weeks at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms bonded to C atoms were placed in geometrically calculated position and were refined using a riding model, with C—H = 0.93 (aromatic) or 0.96 Å (methyl) and U iso(H) = 1.2U eq(Caromatic) and 1.5U eq(Cmethyl). The N- and O-bound H atoms were located in a difference map and the coordinates were refined with N—H = 0.86 (1) Å and U iso(H) = 1.2U eq(N) or 1.5U eq(O).

Table 3. Experimental details.

Crystal data
Chemical formula [Cd(C2H3O2)2(C6H7N3O)2]·2C2H6O
M r 596.92
Crystal system, space group Monoclinic, C2/c
Temperature (K) 294
a, b, c (Å) 15.894 (3), 10.9654 (17), 15.0212 (16)
β (°) 91.746 (12)
V3) 2616.7 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.89
Crystal size (mm) 0.28 × 0.26 × 0.2
 
Data collection
Diffractometer Agilent Xcalibur, Atlas, Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011)
T min, T max 0.910, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5661, 2400, 2017
R int 0.050
(sin θ/λ)max−1) 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.125, 1.05
No. of reflections 2400
No. of parameters 173
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.85, −0.48

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 and SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814017978/bg2533sup1.cif

e-70-00142-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017978/bg2533Isup2.hkl

e-70-00142-Isup2.hkl (118KB, hkl)

CCDC reference: 1017896

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Science and Technology Department of Zhejiang Province (grant No. 2006 C21105) and the Education Department of Zhejiang Province.

supplementary crystallographic information

Crystal data

[Cd(C2H3O2)2(C6H7N3O)2]·2C2H6O F(000) = 1224
Mr = 596.92 Dx = 1.515 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 15.894 (3) Å Cell parameters from 1816 reflections
b = 10.9654 (17) Å θ = 2.9–29.6°
c = 15.0212 (16) Å µ = 0.89 mm1
β = 91.746 (12)° T = 294 K
V = 2616.7 (7) Å3 Block, colourless
Z = 4 0.28 × 0.26 × 0.2 mm

Data collection

Agilent Xcalibur, Atlas, Gemini ultra diffractometer 2400 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2017 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.050
Detector resolution: 10.3592 pixels mm-1 θmax = 25.4°, θmin = 3.5°
ω scans h = −19→16
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −13→11
Tmin = 0.910, Tmax = 1.000 l = −18→16
5661 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0689P)2] where P = (Fo2 + 2Fc2)/3
2400 reflections (Δ/σ)max < 0.001
173 parameters Δρmax = 0.85 e Å3
4 restraints Δρmin = −0.48 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.5000 0.55546 (4) 0.7500 0.0336 (2)
O1 0.3289 (2) 0.5799 (3) 0.6185 (2) 0.0456 (9)
H1 0.323 (4) 0.623 (5) 0.664 (2) 0.068*
O2 0.5829 (2) 0.6898 (3) 0.67588 (19) 0.0448 (8)
O3 0.6590 (3) 0.7760 (3) 0.7846 (2) 0.0627 (11)
N1 0.5479 (2) 0.3954 (4) 0.6536 (2) 0.0349 (9)
N2 0.3668 (3) 0.4189 (4) 0.5009 (3) 0.0411 (10)
H2A 0.384 (3) 0.381 (4) 0.456 (2) 0.049*
H2B 0.333 (3) 0.478 (3) 0.493 (4) 0.049*
N3 0.4048 (2) 0.5170 (4) 0.6337 (2) 0.0348 (9)
C1 0.6196 (3) 0.3347 (5) 0.6661 (3) 0.0510 (13)
H1A 0.6528 0.3520 0.7166 0.061*
C2 0.6469 (4) 0.2478 (5) 0.6083 (4) 0.0574 (14)
H2 0.6969 0.2059 0.6200 0.069*
C3 0.5988 (3) 0.2237 (5) 0.5326 (4) 0.0548 (14)
H3 0.6165 0.1666 0.4914 0.066*
C4 0.5238 (3) 0.2855 (4) 0.5189 (3) 0.0421 (12)
H4 0.4900 0.2698 0.4686 0.051*
C5 0.4994 (3) 0.3717 (4) 0.5812 (3) 0.0304 (10)
C6 0.4200 (3) 0.4393 (4) 0.5716 (3) 0.0307 (10)
C7 0.6314 (3) 0.7709 (5) 0.7064 (3) 0.0423 (12)
C8 0.6594 (5) 0.8661 (6) 0.6421 (4) 0.077 (2)
H8A 0.6782 0.8273 0.5890 0.115*
H8B 0.7047 0.9125 0.6688 0.115*
H8C 0.6132 0.9194 0.6273 0.115*
O4 0.2093 (3) 0.5194 (5) 0.3968 (3) 0.0762 (13)
H4A 0.207 (6) 0.583 (5) 0.364 (5) 0.114*
C9 0.1674 (7) 0.4180 (8) 0.3623 (6) 0.105 (3)
H9A 0.1766 0.3505 0.4032 0.126*
H9B 0.1927 0.3961 0.3066 0.126*
C10 0.0799 (7) 0.4315 (9) 0.3466 (8) 0.146 (5)
H10A 0.0541 0.4565 0.4006 0.219*
H10B 0.0563 0.3551 0.3271 0.219*
H10C 0.0698 0.4922 0.3014 0.219*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.0343 (3) 0.0403 (3) 0.0260 (3) 0.000 −0.00478 (18) 0.000
O1 0.0355 (19) 0.053 (2) 0.047 (2) 0.0123 (16) −0.0101 (15) −0.0073 (16)
O2 0.054 (2) 0.046 (2) 0.0348 (17) −0.0145 (18) −0.0026 (14) −0.0009 (15)
O3 0.089 (3) 0.042 (2) 0.055 (2) −0.020 (2) −0.027 (2) 0.0086 (17)
N1 0.036 (2) 0.034 (2) 0.0340 (19) 0.0011 (18) −0.0032 (16) −0.0007 (16)
N2 0.043 (2) 0.045 (3) 0.034 (2) 0.005 (2) −0.0100 (18) −0.0086 (18)
N3 0.031 (2) 0.040 (2) 0.033 (2) 0.0060 (18) −0.0039 (15) −0.0039 (17)
C1 0.039 (3) 0.065 (4) 0.049 (3) 0.013 (3) −0.012 (2) −0.008 (3)
C2 0.048 (3) 0.051 (3) 0.073 (4) 0.019 (3) −0.004 (3) −0.002 (3)
C3 0.058 (3) 0.048 (3) 0.059 (3) 0.008 (3) 0.008 (3) −0.009 (3)
C4 0.046 (3) 0.041 (3) 0.039 (2) 0.004 (2) −0.001 (2) −0.010 (2)
C5 0.035 (2) 0.028 (2) 0.028 (2) −0.003 (2) 0.0008 (18) 0.0048 (17)
C6 0.031 (2) 0.035 (2) 0.026 (2) −0.003 (2) 0.0000 (17) 0.0072 (18)
C7 0.043 (3) 0.046 (3) 0.038 (3) −0.001 (2) −0.001 (2) −0.006 (2)
C8 0.097 (5) 0.075 (5) 0.057 (4) −0.045 (4) −0.008 (3) 0.020 (3)
O4 0.081 (3) 0.068 (3) 0.079 (3) −0.001 (3) −0.021 (2) 0.015 (2)
C9 0.148 (9) 0.080 (6) 0.086 (6) −0.003 (6) −0.029 (6) 0.001 (4)
C10 0.139 (10) 0.150 (11) 0.147 (9) −0.070 (8) −0.041 (8) 0.044 (7)

Geometric parameters (Å, º)

Cd1—O2 2.288 (3) C2—C3 1.376 (8)
Cd1—O2i 2.288 (3) C3—H3 0.9300
Cd1—N1 2.413 (4) C3—C4 1.381 (7)
Cd1—N1i 2.413 (4) C4—H4 0.9300
Cd1—N3i 2.315 (3) C4—C5 1.394 (6)
Cd1—N3 2.315 (3) C5—C6 1.468 (6)
O1—H1 0.846 (10) C7—C8 1.498 (7)
O1—N3 1.404 (5) C8—H8A 0.9600
O2—C7 1.254 (6) C8—H8B 0.9600
O3—C7 1.244 (5) C8—H8C 0.9600
N1—C1 1.328 (6) O4—H4A 0.851 (10)
N1—C5 1.339 (5) O4—C9 1.388 (10)
N2—H2A 0.851 (10) C9—H9A 0.9700
N2—H2B 0.847 (10) C9—H9B 0.9700
N2—C6 1.355 (6) C9—C10 1.412 (14)
N3—C6 1.291 (6) C10—H10A 0.9600
C1—H1A 0.9300 C10—H10B 0.9600
C1—C2 1.368 (7) C10—H10C 0.9600
C2—H2 0.9300
O2—Cd1—O2i 99.86 (18) C2—C3—C4 118.9 (5)
O2—Cd1—N1 88.81 (13) C4—C3—H3 120.5
O2i—Cd1—N1 163.16 (12) C3—C4—H4 120.4
O2—Cd1—N1i 163.16 (12) C3—C4—C5 119.3 (4)
O2i—Cd1—N1i 88.81 (13) C5—C4—H4 120.4
O2—Cd1—N3i 96.42 (12) N1—C5—C4 120.8 (4)
O2—Cd1—N3 97.07 (12) N1—C5—C6 117.0 (4)
O2i—Cd1—N3 96.42 (12) C4—C5—C6 122.2 (4)
O2i—Cd1—N3i 97.07 (12) N2—C6—C5 120.5 (4)
N1i—Cd1—N1 86.69 (19) N3—C6—N2 123.3 (4)
N3—Cd1—N1 68.01 (13) N3—C6—C5 116.1 (4)
N3—Cd1—N1i 96.27 (13) O2—C7—C8 116.7 (4)
N3i—Cd1—N1i 68.01 (13) O3—C7—O2 124.9 (5)
N3i—Cd1—N1 96.27 (13) O3—C7—C8 118.3 (5)
N3i—Cd1—N3 159.0 (2) C7—C8—H8A 109.5
N3—O1—H1 106 (4) C7—C8—H8B 109.5
C7—O2—Cd1 129.4 (3) C7—C8—H8C 109.5
C1—N1—Cd1 124.4 (3) H8A—C8—H8B 109.5
C1—N1—C5 119.2 (4) H8A—C8—H8C 109.5
C5—N1—Cd1 116.4 (3) H8B—C8—H8C 109.5
H2A—N2—H2B 119 (5) C9—O4—H4A 116 (6)
C6—N2—H2A 120 (4) O4—C9—H9A 108.3
C6—N2—H2B 111 (4) O4—C9—H9B 108.3
O1—N3—Cd1 124.9 (3) O4—C9—C10 115.9 (9)
C6—N3—Cd1 122.3 (3) H9A—C9—H9B 107.4
C6—N3—O1 112.6 (3) C10—C9—H9A 108.3
N1—C1—H1A 118.5 C10—C9—H9B 108.3
N1—C1—C2 123.1 (4) C9—C10—H10A 109.5
C2—C1—H1A 118.5 C9—C10—H10B 109.5
C1—C2—H2 120.7 C9—C10—H10C 109.5
C1—C2—C3 118.7 (5) H10A—C10—H10B 109.5
C3—C2—H2 120.7 H10A—C10—H10C 109.5
C2—C3—H3 120.5 H10B—C10—H10C 109.5
Cd1—O2—C7—O3 17.9 (8) N1—Cd1—N3—O1 −178.6 (4)
Cd1—O2—C7—C8 −164.0 (4) N1—Cd1—N3—C6 −3.7 (3)
Cd1—N1—C1—C2 −177.2 (4) N1i—Cd1—N3—C6 −87.6 (4)
Cd1—N1—C5—C4 176.5 (3) N1—C1—C2—C3 1.3 (9)
Cd1—N1—C5—C6 −4.1 (5) N1—C5—C6—N2 −178.9 (4)
Cd1—N3—C6—N2 −177.2 (3) N1—C5—C6—N3 0.9 (6)
Cd1—N3—C6—C5 3.0 (5) N3—Cd1—O2—C7 157.2 (4)
O1—N3—C6—N2 −1.7 (6) N3i—Cd1—O2—C7 −38.9 (4)
O1—N3—C6—C5 178.5 (3) N3i—Cd1—N1—C1 −13.3 (4)
O2i—Cd1—O2—C7 59.4 (4) N3—Cd1—N1—C1 −178.9 (4)
O2i—Cd1—N1—C1 −155.5 (4) N3i—Cd1—N1—C5 169.5 (3)
O2—Cd1—N1—C1 83.0 (4) N3—Cd1—N1—C5 3.9 (3)
O2—Cd1—N1—C5 −94.2 (3) N3i—Cd1—N3—O1 137.7 (3)
O2i—Cd1—N1—C5 27.3 (6) N3i—Cd1—N3—C6 −47.4 (3)
O2i—Cd1—N3—O1 8.1 (4) C1—N1—C5—C4 −0.8 (7)
O2—Cd1—N3—O1 −92.8 (3) C1—N1—C5—C6 178.6 (4)
O2i—Cd1—N3—C6 −177.1 (4) C1—C2—C3—C4 −1.7 (9)
O2—Cd1—N3—C6 82.1 (4) C2—C3—C4—C5 0.9 (8)
N1—Cd1—O2—C7 −135.1 (4) C3—C4—C5—N1 0.4 (7)
N1i—Cd1—O2—C7 −60.6 (6) C3—C4—C5—C6 −179.0 (4)
N1i—Cd1—N1—C1 −80.8 (4) C4—C5—C6—N2 0.5 (6)
N1i—Cd1—N1—C5 102.1 (3) C4—C5—C6—N3 −179.7 (4)
N1i—Cd1—N3—O1 97.6 (3) C5—N1—C1—C2 −0.1 (8)

Symmetry code: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O3i 0.85 (1) 1.86 (4) 2.600 (5) 145 (6)
N2—H2A···O2ii 0.85 (1) 2.20 (2) 3.040 (5) 169 (5)
N2—H2B···O4 0.85 (1) 2.45 (4) 3.113 (6) 136 (5)
O4—H4A···O3iii 0.85 (1) 2.09 (3) 2.903 (5) 161 (8)

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1, −y+1, −z+1; (iii) x−1/2, −y+3/2, z−1/2.

References

  1. Agilent (2011). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Alcazar, A., Cordero, B., Esteban, J., Tangoulis, V., Font-Bardia, M., Calvet, T. & Escuer, A. (2013). Dalton Trans. 42, 12334–12345. [DOI] [PubMed]
  3. Croitor, L., Coropceanu, E. B., Siminel, A. V., Masunov, A. E. & Fonari, M. S. (2013). Polyhedron, 60, 140–150.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Escuer, A., Vlahopoulou, G., Perlepes, S. P. & Mautner, F. A. (2011). Inorg. Chem. 50, 2468–2478. [DOI] [PubMed]
  6. Miyasaka, H., Nezu, T., Iwahori, F., Furukawa, S., Sugimoto, K., Cleŕac, R., Sugiura, K. & Yamashita, M. (2003). Inorg. Chem. 42, 4504–4503. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Stamatatos, T. C., Foguet-Albiol, D., Lee, S. C., Raptopoulou, C. P., Terzis, A., Wernsdorfer, W., Hill, S. O., Perlepes, S. P. & Christou, G. (2007). J.Am.Chem.Soc. 129, 9484–9499. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814017978/bg2533sup1.cif

e-70-00142-sup1.cif (24.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017978/bg2533Isup2.hkl

e-70-00142-Isup2.hkl (118KB, hkl)

CCDC reference: 1017896

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES