Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 6;70(Pt 9):121–123. doi: 10.1107/S1600536814017711

Relative substituent orientation in the structure of cis-3-chloro-1,3-dimethyl-N-(4-nitro­phen­yl)-2-oxo­cyclo­pentane-1-carboxamide

Matthias Zeller a, Jonas Warneke b, Vladimir Azov b,*
PMCID: PMC4186136  PMID: 25309157

The crystal structure of the title compound allowed the cis substituent orientation on the cyclo­penta­none ring to be established. The mol­ecular conformation and crystal packing are governed by a network of hydrogen bonds and by π–π stacking.

Keywords: crystal structure, hydrogen bonds, π–π stacking, methacryloyl chloride dimer, Diels–Alder reaction

Abstract

The structure of the title compound, C14H15ClN2O4, prepared by reaction of a methacryloyl dimer with nitro­aniline, was determined to establish the relative substituent orientation on the cyclo­penta­none ring. In agreement with an earlier proposed reaction mechanism, the amide group and the methyl group adjacent to the chloro substituent adopt equatorial positions and relative cis orientation, whereas the Cl substituent itself and the methyl group adjacent to the amide have axial orientations relative to the mean plane of the five-membered ring. The conformation of the mol­ecule is stabilized by one classical N—H⋯O (2.18 Å) and one non-classical C—H⋯O (2.23 Å) hydrogen bond, each possessing an S(6) graph-set motif. The crystal packing is defined by several non-classical intra­molecular hydrogen bonds, as well as by partial stacking of the aromatic rings.

Chemical context  

The title compound, cis-3-chloro-1,3-dimethyl-N-(4-nitro­phen­yl)-2-oxo­cyclo­pentane-1-carboxamide, (1), was prepared in the course of study of the formation and reactivity of methacryloyl chloride dimers (2), (3) and (4) (Warneke et al., 2014). The scheme below shows the reactivity of methacryloyl dimers and the synthesis of the title compound (1) (LA = Lewis acid). graphic file with name e-70-00121-scheme1.jpg

Dimer (2) forms in the oxa-Diels–Alder reaction of two methacryloyl chloride mol­ecules and, in the presence of a Lewis acid (LA, such as AlCl3 or TiCl4), rearranges to cyclo­penta­none derivatives (3) (kinetic product) and (4) (thermodynamic product). Compounds (3) and (4) show similar 1H and 13C NMR spectra, making the direct assignment of the relative orientation of the cyclo­penta­none substituents almost impossible. The crystal structure of (1), as well as the crystal structure of another aromatic amide, cis-3-chloro-N-(3,5-dichloro­phen­yl)-1,3-dimethyl-2-oxo­cyclo­penta­necarboxamide, solved and reported earlier (Warneke et al., 2014), were crucial for the determination of the substituent orientation of the cyclo­penta­none ring after the isolation and derivatization of (4). For the X-ray structures of related trans-3-chloro-N-(3,5-di­chloro­phen­yl)-1,3-dimethyl-2-oxo­cyclo­penta­ne­carboxamide with cis orientation of two methyl groups, see Fischer et al. (1985).

Structural commentary  

The mol­ecular structure of the title compound with atom numbering is shown in Fig. 1. All bond lengths and angles may be considered normal. The crystal structure shows the cis disposition of the two methyl substituents of the cyclo­pentan­one ring. The C1 and C7 substituents adopt equatorial, whereas the C8 and Cl1 substituents have axial orientations relative to the mean plane of the five-membered ring. The 4-nitro­anilide group is essentially planar, with a maximum deviation of fitted atoms from the least-square plane, which is defined by atoms C9–C14, N1, N2, O1 and O2, of 0.0139 (9) Å for N1. The conformation of the amide is stabilized by one classical N1—H1⋯O1 (2.18 Å) and one non-classical C10—H10⋯O2 (2.23 Å) hydrogen bonds (Fig. 2), both with an S(6) graph-set motif (Bernstein et al., 1995).

Figure 1.

Figure 1

Plot of the title mol­ecule, (1), with the atom-numbering scheme. Displacement ellipsoids are represented at 50% probability levels.

Figure 2.

Figure 2

Plot of compound (1) depicting one classical N1—H1⋯O1 and one non-classical C10—H10⋯O2 intra­molecular hydrogen bond (blue), as well as inter­molecular inter­actions with distances shorter than van der Waals contacts (red).

Supra­molecular features  

The crystal packing is governed by several short contacts, which may be classified as non-classical hydrogen bonds (for reviews on weak non-classical hydrogen bonding, see Desiraju & Steiner, 1999; Steiner, 2002; Desiraju, 2005), and by partial stacking of the aromatic rings. Mol­ecules of the title compound form columns with alternating enanti­omeric mol­ecules along the c axis. Although no tight stacking of the aromatic rings can be established [distance between the ring centroids of 4.3719 (6) Å], the aromatic rings of neighboring mol­ecules show partial stacking with several short contacts centered near their nitro-substituent: C14⋯C13i [3.3843 (15) Å; symmetry code: (i) x, −y + Inline graphic, z + Inline graphic], C14⋯C12i [3.2483 (15) Å], and C13⋯N2i [3.1860 (14) Å]. The C7—H7A⋯O1i hydrogen bond (2.53 Å) provides additional cohesion between neighboring enanti­omeric mol­ecules in the columns (Table 1; Fig. 3). Along the b axis, parallel columns are inter­connected by C10—H10⋯Cl1iii [2.86 Å; symmetry code: (iii) −x + 1, −y + 1, −z + 1], and along the a axis by C7—H7C⋯O4ii [2.54 Å; symmetry code: (ii) x + 1, y, z + 1] non-classical hydrogen bonds (Fig. 4). Although the C6—H6B⋯O3v [2.68 Å; symmetry code: (v) −x + 1, y + Inline graphic, −z + Inline graphic] contact also lies below the sum of van der Waals radii, its classification as a hydrogen bond is disputable due to an unfavorable angle of 108°.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 2.18 2.8536 (12) 134
C10—H10⋯O2 0.95 2.23 2.8467 (14) 122
C7—H7A⋯O1i 0.98 2.53 3.3577 (13) 142
C7—H7C⋯O4ii 0.98 2.54 3.4898 (15) 165
C10—H10⋯Cl1iii 0.95 2.86 3.5362 (10) 129
C14—H14⋯Cl1iv 0.95 2.96 3.9034 (10) 171
C6—H6B⋯O3v 0.99 2.68 3.1440 (14) 109

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 3.

Figure 3

Plot of the pair of enanti­omeric mol­ecules of (1), showing short contacts between two aromatic rings and the C7—H7A⋯O1 hydrogen bond.

Figure 4.

Figure 4

Crystal packing of (1), viewed along the c axis. C10—H10⋯Cl1 contacts are shown as blue dashed lines and C7—H7C⋯O4 contacts as green dashed lines.

Synthesis and crystallization  

The title compound was prepared as described by Warneke et al. (2014) by reaction of 4-nitro­aniline and cis-3-chloro-1,3-dimethyl-2-oxo­cyclo­penta­necarbonyl chloride in the presence of Et3N in THF. The product was purified by column chromatography on SiO2 (CHCl3) and readily afforded large transparent X-ray quality crystals upon slow evaporation of CHCl3/heptane solution (m.p. 402–403 K). 1H NMR (360 MHz, CDCl3): δ 8.89 (bs, 1H), 8.26–8.16 (m, 2H), 7.78–7.70 (m, 2H), 2.91–2.78 (m, 1H), 2.49–2.40 (m, 1H), 2.12–2.05 (m, 1H), 2.05–1.98 (m, 1H), 1.75 (s, 3H), 1.51 (s, 3H). 13C NMR (90 MHz, CDCl3): δ 212.4, 168.9, 143.7, 143.3, 125.0, 119.3, 69.7, 55.0, 35.6, 29.4, 25.0, 24.1. MS (EI): m/z (%) 310 (85) [M]+., 173 (85) [M–NHAr]+. HRMS (EI): m/z [M]+ calculated for C14H15ClN2O4 310.07203, found 310.07170.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were included at calculated positions using a riding model, with aromatic, methyl and amide C—H bond lengths of 0.99, 098 and 0.95 Å, respectively, and amide N—H bond lengths of 0.88 Å. The U iso(H) values were fixed at 1.5U eq(C) for methyl H atoms, and 1.2U eq(C,N) for all other carrier atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C14H15ClN2O4
M r 310.73
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.4117 (4), 16.1679 (7), 7.8201 (3)
β (°) 103.382 (2)
V3) 1403.66 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.28 × 0.18 × 0.16
 
Data collection
Diffractometer Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.681, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 15441, 6627, 5116
R int 0.028
(sin θ/λ)max−1) 0.862
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.114, 1.06
No. of reflections 6627
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.58, −0.36

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 and SHELXL2013 (Sheldrick, 2008), SHELXLE (Hübschle et al., 2011), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) 1. DOI: 10.1107/S1600536814017711/hg5403sup1.cif

e-70-00121-sup1.cif (530.4KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S1600536814017711/hg54031sup2.hkl

e-70-00121-1sup2.hkl (363.2KB, hkl)

CCDC reference: 1017486

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

MZ acknowledges the US National Science Foundation for grant 1337296 for the purchase of the X-ray diffractometer.

supplementary crystallographic information

Crystal data

C14H15ClN2O4 Dx = 1.470 Mg m3
Mr = 310.73 Melting point: 402 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.4117 (4) Å Cell parameters from 8547 reflections
b = 16.1679 (7) Å θ = 2.5–37.8°
c = 7.8201 (3) Å µ = 0.29 mm1
β = 103.382 (2)° T = 100 K
V = 1403.66 (10) Å3 Block, colourless
Z = 4 0.28 × 0.18 × 0.16 mm
F(000) = 648

Data collection

Bruker D8 Quest CMOS diffractometer 6627 independent reflections
Radiation source: I-mu-S microsource X-ray tube 5116 reflections with I > 2σ(I)
'laterally graded multilayer (Goebel) mirror' monochromator Rint = 0.028
ω and phi scans θmax = 37.8°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2014) h = −19→17
Tmin = 0.681, Tmax = 0.747 k = −21→27
15441 measured reflections l = −12→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.5524P] where P = (Fo2 + 2Fc2)/3
6627 reflections (Δ/σ)max = 0.001
192 parameters Δρmax = 0.58 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.64522 (9) 0.42645 (6) 0.37961 (14) 0.01331 (17)
C2 0.76549 (9) 0.42549 (6) 0.51672 (14) 0.01232 (17)
C3 0.77769 (9) 0.35857 (6) 0.65852 (13) 0.01139 (16)
C4 0.83111 (9) 0.39694 (6) 0.83990 (13) 0.01175 (16)
C5 0.87160 (10) 0.48290 (6) 0.79734 (15) 0.01608 (19)
H5A 0.9561 0.4818 0.7857 0.019*
H5B 0.8649 0.5228 0.8906 0.019*
C6 0.78602 (10) 0.50660 (6) 0.62191 (14) 0.01600 (19)
H6A 0.7091 0.5285 0.6412 0.019*
H6B 0.8231 0.5489 0.5596 0.019*
C7 0.92411 (9) 0.34331 (6) 0.96019 (14) 0.01468 (18)
H7A 0.8894 0.2888 0.9723 0.022*
H7B 0.9483 0.3695 1.0760 0.022*
H7C 0.9947 0.3370 0.9100 0.022*
C8 0.86666 (10) 0.40959 (7) 0.41801 (16) 0.0181 (2)
H8A 0.8532 0.3561 0.3578 0.027*
H8B 0.9449 0.4091 0.5024 0.027*
H8C 0.8658 0.4536 0.3315 0.027*
C9 0.50005 (9) 0.33261 (6) 0.18533 (13) 0.01140 (16)
C10 0.43082 (10) 0.39401 (6) 0.08226 (14) 0.01465 (18)
H10 0.4525 0.4506 0.1006 0.018*
C11 0.33034 (9) 0.37168 (6) −0.04677 (14) 0.01470 (18)
H11 0.2830 0.4129 −0.1173 0.018*
C12 0.29953 (9) 0.28902 (6) −0.07204 (14) 0.01272 (17)
C13 0.36802 (9) 0.22669 (6) 0.02663 (14) 0.01327 (17)
H13 0.3463 0.1702 0.0063 0.016*
C14 0.46849 (9) 0.24892 (6) 0.15510 (14) 0.01253 (17)
H14 0.5165 0.2073 0.2233 0.015*
N1 0.60174 (8) 0.35022 (5) 0.31966 (12) 0.01282 (15)
H1 0.6424 0.3073 0.3715 0.015*
N2 0.19374 (8) 0.26654 (6) −0.20886 (13) 0.01633 (17)
O1 0.75274 (7) 0.28588 (5) 0.63432 (10) 0.01533 (15)
O2 0.59793 (8) 0.49203 (5) 0.32621 (13) 0.02455 (19)
O3 0.16813 (9) 0.19301 (6) −0.23155 (13) 0.0270 (2)
O4 0.13478 (8) 0.32247 (6) −0.29704 (12) 0.02274 (18)
Cl1 0.69827 (2) 0.40657 (2) 0.93120 (4) 0.01568 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0149 (4) 0.0129 (4) 0.0118 (4) −0.0017 (3) 0.0024 (4) 0.0009 (3)
C2 0.0143 (4) 0.0112 (4) 0.0107 (4) −0.0023 (3) 0.0015 (3) 0.0011 (3)
C3 0.0117 (4) 0.0114 (4) 0.0113 (4) 0.0001 (3) 0.0031 (3) 0.0001 (3)
C4 0.0125 (4) 0.0121 (4) 0.0106 (4) −0.0012 (3) 0.0026 (3) −0.0003 (3)
C5 0.0191 (5) 0.0129 (4) 0.0147 (5) −0.0057 (3) 0.0008 (4) −0.0001 (3)
C6 0.0217 (5) 0.0106 (4) 0.0140 (5) −0.0040 (3) 0.0007 (4) 0.0010 (3)
C7 0.0123 (4) 0.0166 (4) 0.0143 (5) 0.0007 (3) 0.0013 (4) 0.0018 (3)
C8 0.0159 (5) 0.0241 (5) 0.0151 (5) −0.0027 (4) 0.0049 (4) 0.0018 (4)
C9 0.0112 (4) 0.0124 (4) 0.0106 (4) 0.0001 (3) 0.0025 (3) 0.0002 (3)
C10 0.0147 (4) 0.0129 (4) 0.0150 (5) 0.0009 (3) 0.0007 (4) 0.0015 (3)
C11 0.0133 (4) 0.0154 (4) 0.0145 (5) 0.0019 (3) 0.0014 (4) 0.0019 (3)
C12 0.0102 (4) 0.0174 (4) 0.0108 (4) 0.0005 (3) 0.0028 (3) −0.0004 (3)
C13 0.0131 (4) 0.0137 (4) 0.0132 (4) −0.0002 (3) 0.0034 (4) −0.0004 (3)
C14 0.0126 (4) 0.0124 (4) 0.0124 (4) 0.0009 (3) 0.0025 (3) 0.0004 (3)
N1 0.0128 (4) 0.0109 (3) 0.0131 (4) 0.0001 (3) −0.0003 (3) 0.0006 (3)
N2 0.0128 (4) 0.0224 (4) 0.0131 (4) −0.0007 (3) 0.0016 (3) −0.0007 (3)
O1 0.0203 (4) 0.0104 (3) 0.0146 (4) −0.0009 (2) 0.0026 (3) −0.0009 (2)
O2 0.0275 (4) 0.0131 (3) 0.0261 (5) 0.0012 (3) −0.0081 (4) 0.0022 (3)
O3 0.0256 (4) 0.0228 (4) 0.0265 (5) −0.0073 (3) −0.0064 (4) −0.0012 (3)
O4 0.0163 (4) 0.0281 (4) 0.0204 (4) 0.0043 (3) −0.0025 (3) 0.0038 (3)
Cl1 0.01539 (11) 0.01668 (11) 0.01600 (12) 0.00173 (8) 0.00574 (9) −0.00161 (8)

Geometric parameters (Å, º)

C1—O2 1.2189 (13) C8—H8A 0.9800
C1—N1 1.3701 (13) C8—H8B 0.9800
C1—C2 1.5338 (15) C8—H8C 0.9800
C2—C3 1.5324 (14) C9—C10 1.4017 (14)
C2—C6 1.5369 (14) C9—N1 1.4025 (13)
C2—C8 1.5515 (15) C9—C14 1.4061 (13)
C3—O1 1.2136 (12) C10—C11 1.3884 (15)
C3—C4 1.5390 (14) C10—H10 0.9500
C4—C7 1.5169 (14) C11—C12 1.3844 (15)
C4—C5 1.5253 (14) C11—H11 0.9500
C4—Cl1 1.8257 (10) C12—C13 1.3938 (14)
C5—C6 1.5371 (15) C12—N2 1.4616 (14)
C5—H5A 0.9900 C13—C14 1.3856 (14)
C5—H5B 0.9900 C13—H13 0.9500
C6—H6A 0.9900 C14—H14 0.9500
C6—H6B 0.9900 N1—H1 0.8800
C7—H7A 0.9800 N2—O3 1.2273 (13)
C7—H7B 0.9800 N2—O4 1.2373 (13)
C7—H7C 0.9800
O2—C1—N1 124.66 (10) C4—C7—H7C 109.5
O2—C1—C2 120.13 (9) H7A—C7—H7C 109.5
N1—C1—C2 115.13 (8) H7B—C7—H7C 109.5
C3—C2—C1 115.45 (8) C2—C8—H8A 109.5
C3—C2—C6 103.77 (8) C2—C8—H8B 109.5
C1—C2—C6 111.49 (8) H8A—C8—H8B 109.5
C3—C2—C8 106.84 (8) C2—C8—H8C 109.5
C1—C2—C8 107.60 (9) H8A—C8—H8C 109.5
C6—C2—C8 111.64 (9) H8B—C8—H8C 109.5
O1—C3—C2 126.31 (9) C10—C9—N1 123.06 (9)
O1—C3—C4 124.24 (9) C10—C9—C14 119.77 (9)
C2—C3—C4 109.42 (8) N1—C9—C14 117.17 (9)
C7—C4—C5 116.90 (9) C11—C10—C9 119.64 (9)
C7—C4—C3 114.34 (8) C11—C10—H10 120.2
C5—C4—C3 103.98 (8) C9—C10—H10 120.2
C7—C4—Cl1 109.35 (7) C12—C11—C10 119.64 (9)
C5—C4—Cl1 109.18 (7) C12—C11—H11 120.2
C3—C4—Cl1 101.95 (7) C10—C11—H11 120.2
C4—C5—C6 105.06 (8) C11—C12—C13 121.84 (10)
C4—C5—H5A 110.7 C11—C12—N2 118.95 (9)
C6—C5—H5A 110.7 C13—C12—N2 119.20 (9)
C4—C5—H5B 110.7 C14—C13—C12 118.54 (9)
C6—C5—H5B 110.7 C14—C13—H13 120.7
H5A—C5—H5B 108.8 C12—C13—H13 120.7
C2—C6—C5 104.58 (8) C13—C14—C9 120.55 (9)
C2—C6—H6A 110.8 C13—C14—H14 119.7
C5—C6—H6A 110.8 C9—C14—H14 119.7
C2—C6—H6B 110.8 C1—N1—C9 127.61 (9)
C5—C6—H6B 110.8 C1—N1—H1 116.2
H6A—C6—H6B 108.9 C9—N1—H1 116.2
C4—C7—H7A 109.5 O3—N2—O4 123.15 (10)
C4—C7—H7B 109.5 O3—N2—C12 118.38 (9)
H7A—C7—H7B 109.5 O4—N2—C12 118.47 (9)
O2—C1—C2—C3 140.81 (11) C1—C2—C6—C5 154.86 (9)
N1—C1—C2—C3 −42.27 (13) C8—C2—C6—C5 −84.75 (10)
O2—C1—C2—C6 22.73 (14) C4—C5—C6—C2 −37.41 (11)
N1—C1—C2—C6 −160.35 (9) N1—C9—C10—C11 −179.12 (10)
O2—C1—C2—C8 −100.01 (12) C14—C9—C10—C11 1.15 (16)
N1—C1—C2—C8 76.91 (11) C9—C10—C11—C12 0.10 (16)
C1—C2—C3—O1 47.32 (14) C10—C11—C12—C13 −1.21 (16)
C6—C2—C3—O1 169.62 (10) C10—C11—C12—N2 −179.78 (10)
C8—C2—C3—O1 −72.28 (13) C11—C12—C13—C14 1.02 (16)
C1—C2—C3—C4 −134.50 (9) N2—C12—C13—C14 179.59 (9)
C6—C2—C3—C4 −12.19 (11) C12—C13—C14—C9 0.26 (15)
C8—C2—C3—C4 105.90 (9) C10—C9—C14—C13 −1.34 (15)
O1—C3—C4—C7 39.21 (14) N1—C9—C14—C13 178.91 (9)
C2—C3—C4—C7 −139.02 (9) O2—C1—N1—C9 2.35 (18)
O1—C3—C4—C5 167.84 (10) C2—C1—N1—C9 −174.41 (10)
C2—C3—C4—C5 −10.39 (11) C10—C9—N1—C1 4.49 (17)
O1—C3—C4—Cl1 −78.65 (11) C14—C9—N1—C1 −175.77 (10)
C2—C3—C4—Cl1 103.11 (8) C11—C12—N2—O3 179.12 (11)
C7—C4—C5—C6 156.09 (9) C13—C12—N2—O3 0.51 (15)
C3—C4—C5—C6 29.04 (11) C11—C12—N2—O4 −0.39 (15)
Cl1—C4—C5—C6 −79.18 (9) C13—C12—N2—O4 −179.00 (10)
C3—C2—C6—C5 29.97 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.88 2.18 2.8536 (12) 134
C10—H10···O2 0.95 2.23 2.8467 (14) 122
C7—H7A···O1i 0.98 2.53 3.3577 (13) 142
C7—H7C···O4ii 0.98 2.54 3.4898 (15) 165
C10—H10···Cl1iii 0.95 2.86 3.5362 (10) 129
C14—H14···Cl1iv 0.95 2.96 3.9034 (10) 171
C6—H6B···O3v 0.99 2.68 3.1440 (14) 109

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) −x+1, −y+1, −z+1; (iv) x, −y+1/2, z−1/2; (v) −x+1, y+1/2, −z+1/2.

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.
  3. Bruker (2014). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Desiraju, G. R. (2005). Chem. Commun. pp. 2995–3001. [DOI] [PubMed]
  5. Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology New York: Oxford University Press Inc.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Fischer, W., Belluš, D., Adler, A., Francotte, E. & Roloff, A. (1985). Chimia, 39, 19–20.
  8. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.
  12. Warneke, J., Wang, Z., Zeller, M., Leibfritz, D., Plaumann, M. & Azov, V. A. (2014). Tetrahedron 70, 6515–6521.
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1. DOI: 10.1107/S1600536814017711/hg5403sup1.cif

e-70-00121-sup1.cif (530.4KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S1600536814017711/hg54031sup2.hkl

e-70-00121-1sup2.hkl (363.2KB, hkl)

CCDC reference: 1017486

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES