Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 1;70(Pt 9):o948. doi: 10.1107/S1600536814016882

Crystal structure of (E)-1-(4-meth­oxy­phen­yl)ethanone O-de­hydro­abietyloxime

Xiao-Ping Rao a,*, Yan-Jie Cui a, Jian-Qiang Zheng a
PMCID: PMC4186138  PMID: 25309272

Abstract

In the title compound, C29H37NO3 {systematic name: (E)-1-(4-meth­oxy­phen­yl)ethanone O-[(1R,4aS,10aR)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octa­hydro­phenanthrene-1-carbon­yl]oxime}, a new derivative of de­hydro­abietic acid, the two cyclo­hexane rings exhibit a trans-ring junction and are in chair and half-chair conformations. The C=N double bond exhibits an E conformation.

Keywords: crystal structure, oxime, de­hydro­abietic acid derivative, biological compounds

Related literature  

For the biological activity of related compounds, see: Cui et al. (2013); Li et al. (2008); Rao et al. (2008); Sepulveda et al. (2005); For the crystal structures of a related compound, see: Rao et al. (2009).graphic file with name e-70-0o948-scheme1.jpg

Experimental  

Crystal data  

  • C29H37NO3

  • M r = 447.60

  • Orthorhombic, Inline graphic

  • a = 6.1700 (12) Å

  • b = 11.051 (2) Å

  • c = 37.526 (8) Å

  • V = 2558.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CAD-4 Software; North et al., 1968) T min = 0.978, T max = 0.993

  • 5399 measured reflections

  • 4691 independent reflections

  • 2211 reflections with I > 2σ(I)

  • R int = 0.088

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.078

  • wR(F 2) = 0.183

  • S = 1.00

  • 4691 reflections

  • 298 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814016882/lr2129sup1.cif

e-70-0o948-sup1.cif (33.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016882/lr2129Isup2.hkl

e-70-0o948-Isup2.hkl (229.8KB, hkl)

. DOI: 10.1107/S1600536814016882/lr2129fig1.tif

The mol­ecular structure of the title compound, hydrogen atoms are represented by small spheres of arbitrary radius and the displacement ellipsoids are at the 30% probability level.

CCDC reference: 1015316

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported financially by grants from the Natural Science Foundation of Jiangsu Province (grant No. BK2011112).

supplementary crystallographic information

S1. Chemical context

S2. Structural commentary

De­hydro­abietic acid is an important material for design and synthesis of biological compounds (Li et al., 2008; Rao et al., 2008; Sepulveda et al., 2005). As part of our ongoing project of de­hydro­abietic acid derivatives (Cui et al., 2013, Rao et al., 2009). we report herein the structure of the title compound. The structure of de­hydro­abietyl moiety in the title compound is comparable to that found for de­hydro­abietic acid and related compounds (Rao et al., 2009). There are three six-membered rings, which form planar, half-chair and chair conformations, respectively. the two cyclo­hexane rings are in trans ring junction with classic chair and half-chair conformations, respectively, Three chiral centers in the structure exhibit R–, S– and R– configurations, respectively. The C=N double bond is in E configuration.

S3. Supra­molecular features

S4. Database survey

S5. Synthesis and crystallization

60 mmol of De­hydro­abietyl chloride in 15 ml CH2Cl2 were added dropwise to a 60 mmol (4-meth­oxy­phenyl)­ethanone oxime and 60 mmol tri­ethyl­amine dissolved in 40 ml CH2Cl2 at a temperature 0–5°C. The reaction mixture was allowed to stand at room temperature for 2 h and then washed with water and dried over anhydrous MgSO4. The residue was purified by silica gel chromatography.

S6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.97–0.98 Å and Uiso(H) = 1.2Ueq(C,N,H) for all other H atoms. Methyl groups were refined in orientation AFIX 137 of program SHELXL97.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, hydrogen atoms are represented by small spheres of arbitrary radius and the displacement ellipsoids are at the 30% probability level.

Crystal data

C29H37NO3 F(000) = 968
Mr = 447.60 Dx = 1.162 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 25 reflections
a = 6.1700 (12) Å θ = 9–13°
b = 11.051 (2) Å µ = 0.07 mm1
c = 37.526 (8) Å T = 293 K
V = 2558.7 (9) Å3 Block, white
Z = 4 0.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 2211 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.088
Graphite monochromator θmax = 25.4°, θmin = 1.1°
ω/2θ scans h = 0→7
Absorption correction: ψ scan (CAD-4 Software; North et al., 1968) k = 0→13
Tmin = 0.978, Tmax = 0.993 l = −45→45
5399 measured reflections 3 standard reflections every 200 reflections
4691 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.060P)2] where P = (Fo2 + 2Fc2)/3
4691 reflections (Δ/σ)max < 0.001
298 parameters Δρmax = 0.16 e Å3
1 restraint Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N 0.1892 (7) 0.0800 (4) 0.03582 (11) 0.0798 (14)
O1 0.1751 (9) −0.3034 (4) −0.08665 (11) 0.1262 (18)
C1 0.3329 (16) −0.3936 (6) −0.0959 (2) 0.168 (4)
H1A 0.2748 −0.4457 −0.1140 0.252*
H1B 0.3680 −0.4407 −0.0751 0.252*
H1C 0.4616 −0.3549 −0.1047 0.252*
O2 0.2587 (6) 0.1742 (4) 0.06048 (9) 0.0806 (12)
C2 0.2309 (11) −0.2209 (5) −0.06054 (14) 0.0738 (16)
O3 −0.0806 (6) 0.1739 (4) 0.08121 (11) 0.1088 (16)
C3 0.4223 (10) −0.2218 (5) −0.04202 (14) 0.0784 (17)
H3A 0.5247 −0.2821 −0.0460 0.094*
C4 0.4604 (9) −0.1316 (5) −0.01735 (13) 0.0712 (16)
H4A 0.5918 −0.1306 −0.0052 0.085*
C5 0.3105 (8) −0.0432 (5) −0.01018 (12) 0.0590 (13)
C6 0.1146 (10) −0.0433 (5) −0.02848 (14) 0.0727 (16)
H6A 0.0097 0.0150 −0.0238 0.087*
C7 0.0789 (10) −0.1324 (5) −0.05395 (14) 0.0770 (16)
H7A −0.0501 −0.1323 −0.0668 0.092*
C8 0.3520 (9) 0.0520 (6) 0.01648 (14) 0.0731 (16)
C9 0.5748 (10) 0.1086 (7) 0.01919 (18) 0.135 (3)
H9A 0.5759 0.1669 0.0381 0.202*
H9B 0.6099 0.1479 −0.0029 0.202*
H9C 0.6801 0.0468 0.0240 0.202*
C10 0.1024 (8) 0.2116 (5) 0.08260 (13) 0.0616 (13)
C11 0.1842 (8) 0.3063 (4) 0.10914 (12) 0.0548 (12)
C12 0.1060 (9) 0.4277 (5) 0.09359 (13) 0.0724 (16)
H12A 0.1925 0.4470 0.0728 0.087*
H12B −0.0433 0.4191 0.0859 0.087*
C13 0.1212 (10) 0.5326 (4) 0.12026 (12) 0.0694 (15)
H13A 0.2719 0.5473 0.1262 0.083*
H13B 0.0627 0.6056 0.1096 0.083*
C14 −0.0049 (9) 0.5020 (4) 0.15382 (12) 0.0615 (14)
H14A 0.0084 0.5688 0.1704 0.074*
H14B −0.1570 0.4940 0.1477 0.074*
C15 0.0682 (7) 0.3872 (4) 0.17213 (11) 0.0460 (11)
C16 0.0614 (7) 0.2829 (4) 0.14438 (11) 0.0501 (11)
H16A −0.0913 0.2771 0.1374 0.060*
C17 −0.0814 (7) 0.3510 (4) 0.20262 (12) 0.0525 (12)
C18 −0.1403 (8) 0.2317 (5) 0.20981 (12) 0.0574 (13)
C19 −0.0723 (9) 0.1300 (4) 0.18619 (13) 0.0711 (15)
H19A −0.1958 0.1046 0.1720 0.085*
H19B −0.0292 0.0620 0.2009 0.085*
C20 0.1123 (8) 0.1615 (4) 0.16145 (13) 0.0659 (14)
H20A 0.1276 0.0998 0.1432 0.079*
H20B 0.2470 0.1664 0.1747 0.079*
C21 −0.1556 (9) 0.4395 (5) 0.22626 (13) 0.0650 (14)
H21A −0.1182 0.5199 0.2222 0.078*
C22 −0.2828 (9) 0.4119 (5) 0.25553 (13) 0.0658 (14)
H22A −0.3301 0.4733 0.2706 0.079*
C23 −0.3401 (9) 0.2922 (5) 0.26245 (13) 0.0623 (13)
C24 −0.2702 (9) 0.2063 (5) 0.23947 (13) 0.0696 (14)
H24A −0.3104 0.1264 0.2436 0.084*
C25 0.4331 (8) 0.3015 (5) 0.11184 (15) 0.0794 (17)
H25A 0.4764 0.2251 0.1217 0.119*
H25B 0.4830 0.3658 0.1270 0.119*
H25C 0.4950 0.3106 0.0885 0.119*
C26 0.2970 (8) 0.4086 (4) 0.18935 (13) 0.0694 (15)
H26A 0.2883 0.4739 0.2062 0.104*
H26B 0.3996 0.4287 0.1710 0.104*
H26C 0.3430 0.3363 0.2013 0.104*
C27 −0.4765 (10) 0.2590 (5) 0.29540 (14) 0.0794 (17)
H27A −0.4753 0.1706 0.2971 0.095*
C28 −0.3787 (12) 0.3065 (7) 0.32966 (14) 0.120 (3)
H28A −0.4703 0.2851 0.3494 0.181*
H28B −0.3660 0.3930 0.3283 0.181*
H28C −0.2377 0.2716 0.3330 0.181*
C29 −0.7111 (11) 0.2963 (6) 0.29055 (18) 0.104 (2)
H29A −0.7919 0.2758 0.3116 0.157*
H29B −0.7712 0.2546 0.2704 0.157*
H29C −0.7187 0.3820 0.2866 0.157*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N 0.063 (3) 0.111 (4) 0.065 (3) −0.009 (3) 0.001 (3) −0.033 (3)
O1 0.185 (5) 0.093 (3) 0.101 (3) 0.023 (4) −0.032 (4) −0.031 (3)
C1 0.250 (11) 0.095 (5) 0.158 (7) 0.084 (7) −0.017 (8) −0.045 (5)
O2 0.063 (2) 0.115 (3) 0.064 (2) −0.027 (2) 0.018 (2) −0.035 (2)
C2 0.092 (4) 0.070 (4) 0.059 (3) 0.011 (4) −0.003 (3) 0.000 (3)
O3 0.054 (2) 0.151 (4) 0.121 (3) −0.029 (3) 0.003 (3) −0.074 (3)
C3 0.094 (5) 0.074 (4) 0.067 (3) 0.024 (4) 0.005 (4) 0.006 (3)
C4 0.059 (3) 0.091 (4) 0.063 (3) 0.025 (3) −0.006 (3) −0.003 (3)
C5 0.052 (3) 0.077 (4) 0.048 (3) 0.000 (3) −0.001 (3) −0.003 (2)
C6 0.077 (4) 0.075 (4) 0.066 (3) 0.009 (3) 0.000 (3) −0.012 (3)
C7 0.075 (4) 0.081 (4) 0.075 (4) 0.016 (4) −0.011 (3) −0.010 (3)
C8 0.058 (3) 0.112 (5) 0.049 (3) −0.001 (3) −0.001 (3) −0.011 (3)
C9 0.062 (4) 0.216 (9) 0.127 (6) −0.019 (5) 0.012 (4) −0.075 (6)
C10 0.052 (3) 0.071 (3) 0.062 (3) −0.003 (3) 0.002 (3) −0.015 (3)
C11 0.040 (2) 0.072 (3) 0.053 (3) −0.009 (3) 0.001 (2) −0.014 (3)
C12 0.072 (4) 0.088 (4) 0.058 (3) −0.017 (3) −0.004 (3) −0.002 (3)
C13 0.089 (4) 0.055 (3) 0.065 (3) −0.005 (3) 0.014 (3) 0.006 (3)
C14 0.069 (3) 0.049 (3) 0.067 (3) −0.005 (3) 0.007 (3) −0.001 (2)
C15 0.045 (3) 0.040 (2) 0.053 (3) −0.005 (2) −0.005 (2) 0.003 (2)
C16 0.037 (3) 0.053 (3) 0.060 (3) 0.000 (2) −0.005 (2) −0.004 (2)
C17 0.049 (3) 0.053 (3) 0.055 (3) 0.006 (3) −0.012 (2) 0.011 (2)
C18 0.050 (3) 0.074 (3) 0.049 (3) 0.003 (3) −0.003 (2) 0.011 (2)
C19 0.077 (4) 0.063 (3) 0.073 (4) −0.005 (3) −0.004 (3) 0.000 (3)
C20 0.067 (4) 0.053 (3) 0.077 (3) 0.010 (3) −0.009 (3) −0.004 (3)
C21 0.068 (3) 0.065 (3) 0.062 (3) 0.004 (3) −0.003 (3) −0.005 (3)
C22 0.068 (3) 0.076 (3) 0.054 (3) 0.011 (3) −0.004 (3) −0.008 (3)
C23 0.065 (3) 0.067 (3) 0.055 (3) −0.003 (3) −0.003 (3) 0.008 (3)
C24 0.071 (4) 0.067 (3) 0.070 (3) 0.003 (3) −0.007 (3) 0.010 (3)
C25 0.058 (3) 0.098 (4) 0.083 (4) −0.013 (4) −0.005 (3) −0.008 (3)
C26 0.057 (3) 0.085 (4) 0.066 (3) −0.026 (3) −0.016 (3) −0.008 (3)
C27 0.073 (4) 0.101 (4) 0.064 (4) 0.012 (4) 0.019 (3) 0.021 (3)
C28 0.136 (6) 0.166 (7) 0.059 (4) 0.012 (6) 0.003 (4) 0.011 (4)
C29 0.092 (5) 0.110 (5) 0.111 (5) 0.013 (4) 0.022 (4) 0.014 (4)

Geometric parameters (Å, º)

N—C8 1.277 (6) C15—C17 1.523 (6)
N—O2 1.458 (5) C15—C16 1.555 (5)
O1—C2 1.382 (6) C15—C26 1.571 (6)
O1—C1 1.436 (7) C16—C20 1.519 (6)
C1—H1A 0.9600 C16—H16A 0.9800
C1—H1B 0.9600 C17—C18 1.393 (6)
C1—H1C 0.9600 C17—C21 1.398 (6)
O2—C10 1.338 (5) C18—C24 1.400 (6)
C2—C3 1.370 (8) C18—C19 1.492 (6)
C2—C7 1.377 (7) C19—C20 1.510 (6)
O3—C10 1.204 (5) C19—H19A 0.9700
C3—C4 1.381 (7) C19—H19B 0.9700
C3—H3A 0.9300 C20—H20A 0.9700
C4—C5 1.371 (6) C20—H20B 0.9700
C4—H4A 0.9300 C21—C22 1.384 (6)
C5—C6 1.390 (7) C21—H21A 0.9300
C5—C8 1.475 (7) C22—C23 1.394 (6)
C6—C7 1.390 (7) C22—H22A 0.9300
C6—H6A 0.9300 C23—C24 1.353 (6)
C7—H7A 0.9300 C23—C27 1.540 (7)
C8—C9 1.514 (8) C24—H24A 0.9300
C9—H9A 0.9600 C25—H25A 0.9600
C9—H9B 0.9600 C25—H25B 0.9600
C9—H9C 0.9600 C25—H25C 0.9600
C10—C11 1.530 (6) C26—H26A 0.9600
C11—C12 1.540 (6) C26—H26B 0.9600
C11—C16 1.546 (6) C26—H26C 0.9600
C11—C25 1.540 (6) C27—C29 1.516 (8)
C12—C13 1.535 (6) C27—C28 1.514 (8)
C12—H12A 0.9700 C27—H27A 0.9800
C12—H12B 0.9700 C28—H28A 0.9600
C13—C14 1.519 (6) C28—H28B 0.9600
C13—H13A 0.9700 C28—H28C 0.9600
C13—H13B 0.9700 C29—H29A 0.9600
C14—C15 1.511 (6) C29—H29B 0.9600
C14—H14A 0.9700 C29—H29C 0.9600
C14—H14B 0.9700
C8—N—O2 107.6 (4) C16—C15—C26 114.3 (4)
C2—O1—C1 117.4 (6) C20—C16—C11 114.0 (4)
O1—C1—H1A 109.5 C20—C16—C15 111.5 (3)
O1—C1—H1B 109.5 C11—C16—C15 115.8 (4)
H1A—C1—H1B 109.5 C20—C16—H16A 104.7
O1—C1—H1C 109.5 C11—C16—H16A 104.7
H1A—C1—H1C 109.5 C15—C16—H16A 104.7
H1B—C1—H1C 109.5 C18—C17—C21 117.0 (5)
C10—O2—N 113.7 (4) C18—C17—C15 123.5 (4)
C3—C2—C7 120.1 (5) C21—C17—C15 119.4 (4)
C3—C2—O1 124.7 (6) C17—C18—C24 119.6 (5)
C7—C2—O1 115.2 (6) C17—C18—C19 121.6 (4)
C2—C3—C4 118.7 (5) C24—C18—C19 118.8 (5)
C2—C3—H3A 120.6 C18—C19—C20 113.8 (4)
C4—C3—H3A 120.6 C18—C19—H19A 108.8
C5—C4—C3 122.1 (5) C20—C19—H19A 108.8
C5—C4—H4A 119.0 C18—C19—H19B 108.8
C3—C4—H4A 119.0 C20—C19—H19B 108.8
C4—C5—C6 119.3 (5) H19A—C19—H19B 107.7
C4—C5—C8 121.6 (5) C19—C20—C16 107.9 (4)
C6—C5—C8 119.1 (5) C19—C20—H20A 110.1
C7—C6—C5 118.5 (5) C16—C20—H20A 110.1
C7—C6—H6A 120.7 C19—C20—H20B 110.1
C5—C6—H6A 120.7 C16—C20—H20B 110.1
C2—C7—C6 121.2 (5) H20A—C20—H20B 108.4
C2—C7—H7A 119.4 C22—C21—C17 122.3 (5)
C6—C7—H7A 119.4 C22—C21—H21A 118.8
N—C8—C5 114.9 (5) C17—C21—H21A 118.8
N—C8—C9 125.2 (5) C23—C22—C21 120.1 (5)
C5—C8—C9 119.9 (5) C23—C22—H22A 120.0
C8—C9—H9A 109.5 C21—C22—H22A 120.0
C8—C9—H9B 109.5 C24—C23—C22 117.8 (5)
H9A—C9—H9B 109.5 C24—C23—C27 121.3 (5)
C8—C9—H9C 109.5 C22—C23—C27 120.9 (5)
H9A—C9—H9C 109.5 C23—C24—C18 123.2 (5)
H9B—C9—H9C 109.5 C23—C24—H24A 118.4
O3—C10—O2 122.8 (5) C18—C24—H24A 118.4
O3—C10—C11 125.0 (5) C11—C25—H25A 109.5
O2—C10—C11 112.2 (4) C11—C25—H25B 109.5
C10—C11—C12 104.2 (4) H25A—C25—H25B 109.5
C10—C11—C16 106.3 (4) C11—C25—H25C 109.5
C12—C11—C16 108.5 (4) H25A—C25—H25C 109.5
C10—C11—C25 110.4 (4) H25B—C25—H25C 109.5
C12—C11—C25 111.5 (4) C15—C26—H26A 109.5
C16—C11—C25 115.3 (4) C15—C26—H26B 109.5
C13—C12—C11 113.1 (4) H26A—C26—H26B 109.5
C13—C12—H12A 109.0 C15—C26—H26C 109.5
C11—C12—H12A 109.0 H26A—C26—H26C 109.5
C13—C12—H12B 109.0 H26B—C26—H26C 109.5
C11—C12—H12B 109.0 C29—C27—C28 112.9 (6)
H12A—C12—H12B 107.8 C29—C27—C23 111.1 (5)
C14—C13—C12 110.0 (4) C28—C27—C23 112.4 (5)
C14—C13—H13A 109.7 C29—C27—H27A 106.6
C12—C13—H13A 109.7 C28—C27—H27A 106.6
C14—C13—H13B 109.7 C23—C27—H27A 106.6
C12—C13—H13B 109.7 C27—C28—H28A 109.5
H13A—C13—H13B 108.2 C27—C28—H28B 109.5
C15—C14—C13 114.3 (4) H28A—C28—H28B 109.5
C15—C14—H14A 108.7 C27—C28—H28C 109.5
C13—C14—H14A 108.7 H28A—C28—H28C 109.5
C15—C14—H14B 108.7 H28B—C28—H28C 109.5
C13—C14—H14B 108.7 C27—C29—H29A 109.5
H14A—C14—H14B 107.6 C27—C29—H29B 109.5
C14—C15—C17 112.4 (4) H29A—C29—H29B 109.5
C14—C15—C16 108.0 (3) C27—C29—H29C 109.5
C17—C15—C16 107.0 (3) H29A—C29—H29C 109.5
C14—C15—C26 109.2 (4) H29B—C29—H29C 109.5
C17—C15—C26 106.0 (4)
C8—N—O2—C10 −179.7 (5) C10—C11—C16—C15 −163.9 (4)
C1—O1—C2—C3 −2.5 (9) C12—C11—C16—C15 −52.3 (5)
C1—O1—C2—C7 176.8 (6) C25—C11—C16—C15 73.5 (5)
C7—C2—C3—C4 −1.2 (9) C14—C15—C16—C20 −174.6 (4)
O1—C2—C3—C4 178.0 (5) C17—C15—C16—C20 −53.4 (5)
C2—C3—C4—C5 1.8 (9) C26—C15—C16—C20 63.6 (5)
C3—C4—C5—C6 −0.7 (8) C14—C15—C16—C11 52.7 (5)
C3—C4—C5—C8 179.4 (5) C17—C15—C16—C11 174.0 (4)
C4—C5—C6—C7 −1.0 (8) C26—C15—C16—C11 −69.1 (5)
C8—C5—C6—C7 179.0 (5) C14—C15—C17—C18 140.3 (4)
C3—C2—C7—C6 −0.4 (9) C16—C15—C17—C18 21.9 (6)
O1—C2—C7—C6 −179.7 (5) C26—C15—C17—C18 −100.4 (5)
C5—C6—C7—C2 1.5 (9) C14—C15—C17—C21 −43.6 (6)
O2—N—C8—C5 179.8 (4) C16—C15—C17—C21 −162.0 (4)
O2—N—C8—C9 −0.2 (9) C26—C15—C17—C21 75.7 (5)
C4—C5—C8—N −140.2 (6) C21—C17—C18—C24 0.7 (6)
C6—C5—C8—N 39.9 (8) C15—C17—C18—C24 176.9 (4)
C4—C5—C8—C9 39.9 (9) C21—C17—C18—C19 179.3 (4)
C6—C5—C8—C9 −140.1 (6) C15—C17—C18—C19 −4.4 (7)
N—O2—C10—O3 −2.7 (8) C17—C18—C19—C20 16.9 (6)
N—O2—C10—C11 177.4 (4) C24—C18—C19—C20 −164.4 (4)
O3—C10—C11—C12 −79.2 (7) C18—C19—C20—C16 −46.7 (5)
O2—C10—C11—C12 100.7 (5) C11—C16—C20—C19 −158.6 (4)
O3—C10—C11—C16 35.3 (8) C15—C16—C20—C19 67.9 (5)
O2—C10—C11—C16 −144.8 (4) C18—C17—C21—C22 −0.3 (7)
O3—C10—C11—C25 161.0 (6) C15—C17—C21—C22 −176.7 (4)
O2—C10—C11—C25 −19.1 (6) C17—C21—C22—C23 0.4 (8)
C10—C11—C12—C13 165.9 (4) C21—C22—C23—C24 −1.0 (8)
C16—C11—C12—C13 53.0 (5) C21—C22—C23—C27 178.4 (5)
C25—C11—C12—C13 −75.0 (6) C22—C23—C24—C18 1.4 (8)
C11—C12—C13—C14 −56.2 (6) C27—C23—C24—C18 −178.0 (5)
C12—C13—C14—C15 57.6 (6) C17—C18—C24—C23 −1.3 (7)
C13—C14—C15—C17 −172.2 (4) C19—C18—C24—C23 180.0 (5)
C13—C14—C15—C16 −54.5 (5) C24—C23—C27—C29 −106.9 (6)
C13—C14—C15—C26 70.4 (5) C22—C23—C27—C29 73.8 (7)
C10—C11—C16—C20 64.7 (5) C24—C23—C27—C28 125.5 (6)
C12—C11—C16—C20 176.2 (4) C22—C23—C27—C28 −53.8 (7)
C25—C11—C16—C20 −58.0 (6)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LR2129).

References

  1. Cui, Y. J., Rao, X. P., Shang, S. B., Song, J. & Gao, Y. Q. (2013). Lett. Drug Des. Discov. 10, 102–110.
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. Li, F., He, L., Song, Z. Q., Yao, J. C., Rao, X. P. & Li, H. T. (2008). J. Pharm. Pharmacol. 60, 205–211. [DOI] [PubMed]
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Rao, X. P., Song, Z. Q., He, L. & Jia, W. H. (2008). Chem. Pharm. Bull. 56,1575–1578. [DOI] [PubMed]
  7. Rao, X.-P., Song, Z.-Q. & Shang, S.-B. (2009). Acta Cryst. E65, o2402. [DOI] [PMC free article] [PubMed]
  8. Sepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmeda, G. (2005). Pharm. Res. 52, 429–437. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814016882/lr2129sup1.cif

e-70-0o948-sup1.cif (33.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016882/lr2129Isup2.hkl

e-70-0o948-Isup2.hkl (229.8KB, hkl)

. DOI: 10.1107/S1600536814016882/lr2129fig1.tif

The mol­ecular structure of the title compound, hydrogen atoms are represented by small spheres of arbitrary radius and the displacement ellipsoids are at the 30% probability level.

CCDC reference: 1015316

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES