Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 9;70(Pt 9):o993–o994. doi: 10.1107/S1600536814018029

Crystal structure of 4,6-di­amino-2-sulfanyl­idene-1,2-di­hydro­pyridine-3-carbo­nitrile

Shaaban K Mohamed a,b, Mehmet Akkurt c, Kuldip Singh d, Bahgat R M Hussein e, Mustafa R Albayati f,*
PMCID: PMC4186145  PMID: 25309298

Abstract

The title compound, C6H6N4S, crystallizes with two independent mol­ecules, A and B, in the asymmetric unit. Both independent mol­ecules are almost planar [maximum deviations of 0.068 (6) Å in mol­ecule A and 0.079 (6) Å in mol­ecule B]. In the crystal, mol­ecules A and B are linked by N—H⋯S, N—H⋯N and C—H⋯S hydrogen bonds, forming a three-dimensional network.

Keywords: crystal structure, polyfuntional pyridines, 3-cyano­pyridine-2(1H)-thio­nes, hydrogen bonding

Related literature  

For the synthesis of polyfuntional pyridines, see: Attaby et al. (1995); Asadov et al. (2003). For various biological properties of pyridine scaffold compounds, see: Abdel-Rahman et al. (2002); Rao et al. (2006). For the synthesis of 3-cyano­pyridine-2(1H)-thio­nes, see: Fahmy & Mohareb (1986); Schmidt & Kubitzek (1960). For the use of 3-cyano­pyridine-2(1H)-thi­ones in the synthesis of bio-active compounds, see: Taylor et al. (1983); Gangiee et al. (1991); Amr et al. (2003); Abu-Shanab et al. (2002); Awad et al. (1962); El-Gaby (2004); Miky & Zahkoug (1997; Guerrera et al. (1993); Krauze et al. (1999). For a similar crystal structure, see: Eyduran et al. (2007). For the synthesis of the title compound, see: Abu-Shanab (1999). For standard bond-length data, see: Allen et al. (1987).graphic file with name e-70-0o993-scheme1.jpg

Experimental  

Crystal data  

  • C6H6N4S

  • M r = 166.21

  • Orthorhombic, Inline graphic

  • a = 26.252 (8) Å

  • b = 4.3670 (14) Å

  • c = 12.523 (4) Å

  • V = 1435.7 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 150 K

  • 0.32 × 0.12 × 0.04 mm

Data collection  

  • Bruker APEX 2000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS: Bruker, 2011) T min = 0.518, T max = 0.928

  • 11662 measured reflections

  • 3412 independent reflections

  • 2027 reflections with I > 2σ(I)

  • R int = 0.137

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.117

  • S = 0.87

  • 3412 reflections

  • 199 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983), 1573 Friedel pairs

  • Absolute structure parameter: 0.01 (13)

Data collection: SMART (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814018029/hg5399sup1.cif

e-70-0o993-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814018029/hg5399Isup2.hkl

e-70-0o993-Isup2.hkl (187.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814018029/hg5399Isup3.cml

. DOI: 10.1107/S1600536814018029/hg5399fig1.tif

The title mol­ecule showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

b . DOI: 10.1107/S1600536814018029/hg5399fig2.tif

Packing viewed down the b axis showing the hydrogen bonding as dashed lines.

CCDC reference: 1018166

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1A i 0.88 2.44 3.293 (5) 163
N1A—H1A⋯S1ii 0.88 2.80 3.579 (5) 149
N3—H31⋯N4A iii 0.88 2.44 3.300 (8) 165
N3—H32⋯N2A iv 0.88 2.39 3.077 (8) 135
N3A—H33⋯S1A ii 0.88 2.53 3.392 (6) 168
N3A—H34⋯N2v 0.88 2.20 2.981 (8) 148
N4—H41⋯S1A i 0.88 2.75 3.536 (6) 149
N4—H42⋯S1vi 0.88 2.63 3.424 (6) 151
N4—H42⋯N2vi 0.88 2.62 3.083 (9) 114
N4A—H44⋯S1ii 0.88 2.53 3.353 (6) 157
C4—H4⋯S1vi 0.95 2.74 3.551 (8) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

Manchester Metropolitan University, Erciyes University and the University of Leicester are gratefully acknowledged for supporting this study.

supplementary crystallographic information

S1. Comment

Polyfunctional pyridines are highly reactive reagents that have been used extensively in heterocyclic synthesis (Attaby et al., 1995; Asadov et al., 2003). 3-Cyano-pyridine-2(1H)-thiones compounds (Fahmy & Mohareb 1986; Schmidt & Kubitzek, 1960) have also gained considerable interest due to their importance as intermediates for the synthesis of the biologically active deazafolic acid and deaza amino protein ring system (Taylor et al., 1983; Gangiee et al., 1991). In addition, 3-Cyano-2(1H)-pyridinethiones and their related compounds were found to be very reactive substances for the synthesis of many different heterocyclic systems which exhibited biological activities such as antibacterial, pesticidal, antifungal, acaricidal and neurotropic activities (Amr et al., 2003; Abu-Shanab et al., 2002; Awad et al., 1962; El-Gaby, 2004; Miky & Zahkoug, 1997; Guerrera et al., 1993; Krauze et al., 1999; Abdel-Rahman et al., 2002; Rao et al., 2006). In light of these observations we report in this study the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the asymmetric unit contains two independent molecules (A and B). Molecules A and B both are almost planar (Fig. 3), with the maximum deviations of -0.068 (6) Å for N4 in molecule A and 0.079 (6) Å for N2A in molecule B. The bond lengths of molecules A and B are comparable to those of the previously published structures (Eyduran et al., 2007; Allen et al., 1987).

In the crystal, the N—H···S, N—H···N and C—H···S hydrogen bonds connect the molecules, forming a three dimensional network (Table 1, Fig. 2). In addition, C—H···π interactions and π-π stacking interactions are not observed.

S2. Experimental

The title compound was prepared according to the reported method (Abu-Shanab, 1999). Crystals of the product were obtained in excellent yield (79%) and recrystallized from butanol to afford yellow needles (M.p. 583 K) in a sufficient quality for X-ray diffraction studies.

S3. Refinement

H-atoms were placed in calculated positions (C—H = 0.95 and N—H = 0.88 Å and were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Figures

Fig. 1.

Fig. 1.

The title molecule showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing viewed down the b axis showing the hydrogen bonding as dashed lines.

Crystal data

C6H6N4S F(000) = 688
Mr = 166.21 Dx = 1.538 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 748 reflections
a = 26.252 (8) Å θ = 2.3–23.4°
b = 4.3670 (14) Å µ = 0.38 mm1
c = 12.523 (4) Å T = 150 K
V = 1435.7 (8) Å3 Needle, pale yellow
Z = 8 0.32 × 0.12 × 0.04 mm

Data collection

Bruker APEX 2000 CCD area-detector diffractometer 3412 independent reflections
Radiation source: fine-focus sealed tube 2027 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.137
phi and ω scans θmax = 28.7°, θmin = 1.6°
Absorption correction: multi-scan (SADABS: Bruker, 2011) h = −34→33
Tmin = 0.518, Tmax = 0.928 k = −5→5
11662 measured reflections l = −16→16

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.064 w = 1/[σ2(Fo2) + (0.0282P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117 (Δ/σ)max < 0.001
S = 0.87 Δρmax = 0.42 e Å3
3412 reflections Δρmin = −0.34 e Å3
199 parameters Absolute structure: Flack (1983), 1573 Friedel pairs
1 restraint Absolute structure parameter: 0.01 (13)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.27967 (6) 0.5692 (5) 0.10895 (15) 0.0332 (6)
S1A 0.59399 (6) 0.7628 (4) 0.41599 (15) 0.0279 (5)
N1 0.28114 (18) 0.2124 (13) −0.0607 (4) 0.027 (2)
N2 0.1365 (2) 0.4860 (15) 0.1504 (5) 0.039 (2)
N3 0.1288 (2) 0.0258 (14) −0.0735 (5) 0.037 (2)
N4 0.2980 (2) −0.1066 (15) −0.2027 (5) 0.040 (2)
C1 0.2513 (3) 0.3403 (15) 0.0166 (5) 0.026 (2)
C2 0.1995 (2) 0.2719 (16) 0.0115 (5) 0.025 (2)
C3 0.1797 (2) 0.0835 (15) −0.0684 (5) 0.025 (2)
C4 0.2122 (2) −0.0471 (17) −0.1416 (6) 0.030 (3)
C5 0.2637 (2) 0.0167 (17) −0.1372 (6) 0.027 (3)
C6 0.1661 (2) 0.3946 (18) 0.0905 (6) 0.031 (3)
N1A 0.59425 (19) 1.1254 (12) 0.5874 (4) 0.0230 (17)
N2A 0.4628 (2) 0.4521 (15) 0.4637 (5) 0.038 (2)
N3A 0.45527 (19) 0.8585 (13) 0.7032 (4) 0.0327 (19)
N4A 0.6065 (2) 1.4593 (13) 0.7299 (4) 0.0277 (19)
C1A 0.5677 (3) 0.9133 (16) 0.5295 (5) 0.025 (2)
C2A 0.5201 (2) 0.8249 (16) 0.5670 (5) 0.023 (2)
C3A 0.5005 (3) 0.9504 (16) 0.6643 (5) 0.022 (2)
C4A 0.5300 (2) 1.1636 (15) 0.7195 (6) 0.026 (2)
C5A 0.5760 (2) 1.2555 (16) 0.6797 (5) 0.026 (2)
C6A 0.4896 (2) 0.6151 (16) 0.5089 (6) 0.025 (2)
H1 0.31370 0.25940 −0.06120 0.0320*
H4 0.19930 −0.18060 −0.19500 0.0360*
H31 0.11670 −0.09500 −0.12370 0.0450*
H32 0.10800 0.10930 −0.02670 0.0450*
H41 0.33050 −0.06070 −0.19550 0.0480*
H42 0.28820 −0.23400 −0.25310 0.0480*
H1A 0.62450 1.18140 0.56440 0.0270*
H4A 0.51800 1.24540 0.78520 0.0310*
H33 0.44400 0.93300 0.76400 0.0400*
H34 0.43690 0.72390 0.66770 0.0400*
H43 0.59690 1.53930 0.79120 0.0330*
H44 0.63580 1.51200 0.70130 0.0330*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0253 (9) 0.0437 (12) 0.0307 (10) −0.0029 (9) −0.0017 (8) −0.0139 (10)
S1A 0.0223 (8) 0.0385 (10) 0.0229 (8) 0.0018 (9) 0.0020 (8) 0.0010 (9)
N1 0.016 (3) 0.037 (4) 0.027 (4) −0.001 (3) −0.001 (2) −0.005 (3)
N2 0.026 (3) 0.054 (5) 0.037 (4) 0.002 (3) −0.001 (3) −0.011 (3)
N3 0.024 (3) 0.054 (4) 0.034 (4) −0.004 (3) −0.002 (3) −0.020 (4)
N4 0.029 (3) 0.057 (5) 0.034 (4) −0.009 (3) 0.004 (3) −0.020 (3)
C1 0.031 (4) 0.025 (4) 0.021 (4) 0.003 (3) 0.000 (3) −0.001 (3)
C2 0.023 (4) 0.031 (4) 0.021 (4) 0.005 (3) −0.003 (3) −0.006 (3)
C3 0.022 (3) 0.028 (4) 0.025 (4) −0.002 (3) 0.001 (3) −0.001 (4)
C4 0.025 (4) 0.034 (5) 0.030 (4) −0.005 (3) 0.000 (3) −0.017 (4)
C5 0.026 (4) 0.036 (5) 0.020 (4) −0.003 (3) 0.001 (3) −0.008 (3)
C6 0.023 (4) 0.040 (5) 0.031 (5) 0.001 (3) −0.001 (3) −0.007 (4)
N1A 0.022 (3) 0.027 (3) 0.020 (3) −0.003 (3) −0.001 (2) 0.002 (3)
N2A 0.035 (4) 0.042 (4) 0.036 (4) −0.009 (3) 0.001 (3) −0.003 (3)
N3A 0.021 (3) 0.049 (4) 0.028 (3) −0.004 (3) 0.005 (3) −0.012 (3)
N4A 0.026 (3) 0.032 (4) 0.025 (3) −0.003 (3) −0.002 (2) 0.000 (3)
C1A 0.028 (4) 0.023 (4) 0.023 (4) 0.004 (3) −0.003 (3) 0.001 (3)
C2A 0.019 (3) 0.026 (4) 0.025 (4) 0.002 (3) −0.002 (3) 0.004 (3)
C3A 0.018 (3) 0.026 (4) 0.023 (4) 0.006 (3) 0.000 (3) 0.003 (3)
C4A 0.027 (4) 0.025 (4) 0.026 (4) 0.002 (3) 0.001 (3) −0.001 (3)
C5A 0.023 (4) 0.026 (4) 0.030 (4) 0.000 (3) −0.008 (3) 0.009 (4)
C6A 0.020 (4) 0.024 (4) 0.032 (4) 0.006 (3) 0.005 (3) 0.007 (4)

Geometric parameters (Å, º)

S1—C1 1.700 (7) N1A—C5A 1.374 (8)
S1A—C1A 1.711 (7) N1A—C1A 1.367 (9)
N1—C1 1.365 (9) N2A—C6A 1.150 (9)
N1—C5 1.363 (9) N3A—C3A 1.345 (9)
N2—C6 1.151 (9) C4—H4 0.9500
N3—C3 1.361 (7) N4A—C5A 1.352 (8)
N4—C5 1.332 (9) C1A—C2A 1.390 (9)
C1—C2 1.394 (9) N1A—H1A 0.8800
N1—H1 0.8800 C2A—C3A 1.432 (9)
C2—C3 1.396 (9) C2A—C6A 1.418 (9)
C2—C6 1.426 (9) C3A—C4A 1.394 (10)
C3—C4 1.376 (9) N3A—H34 0.8800
N3—H31 0.8800 N3A—H33 0.8800
N3—H32 0.8800 C4A—C5A 1.367 (8)
N4—H41 0.8800 N4A—H43 0.8800
N4—H42 0.8800 N4A—H44 0.8800
C4—C5 1.382 (8) C4A—H4A 0.9500
C1—N1—C5 124.2 (5) C5—C4—H4 120.00
S1—C1—N1 118.1 (6) S1A—C1A—N1A 119.7 (5)
S1—C1—C2 125.8 (5) S1A—C1A—C2A 122.5 (5)
N1—C1—C2 116.1 (6) N1A—C1A—C2A 117.9 (6)
C1—N1—H1 118.00 C1A—N1A—H1A 118.00
C5—N1—H1 118.00 C5A—N1A—H1A 118.00
C1—C2—C3 121.5 (6) C1A—C2A—C3A 120.3 (6)
C1—C2—C6 119.2 (6) C1A—C2A—C6A 120.9 (6)
C3—C2—C6 119.3 (5) C3A—C2A—C6A 118.8 (6)
N3—C3—C2 120.6 (5) N3A—C3A—C2A 120.8 (6)
C3—N3—H31 120.00 C3A—N3A—H33 120.00
C3—N3—H32 120.00 C3A—N3A—H34 120.00
H31—N3—H32 120.00 H33—N3A—H34 120.00
C2—C3—C4 119.4 (5) C2A—C3A—C4A 118.6 (6)
N3—C3—C4 120.0 (6) N3A—C3A—C4A 120.7 (6)
C5—N4—H42 120.00 C5A—N4A—H44 120.00
C5—N4—H41 120.00 C5A—N4A—H43 120.00
C3—C4—C5 119.8 (6) C3A—C4A—C5A 120.4 (7)
H41—N4—H42 120.00 H43—N4A—H44 120.00
N1—C5—N4 117.3 (5) N1A—C5A—N4A 117.2 (5)
N4—C5—C4 123.8 (7) N4A—C5A—C4A 123.2 (6)
N1—C5—C4 118.9 (6) N1A—C5A—C4A 119.6 (6)
N2—C6—C2 175.5 (7) N2A—C6A—C2A 176.7 (6)
C1A—N1A—C5A 123.3 (5) C3A—C4A—H4A 120.00
C3—C4—H4 120.00 C5A—C4A—H4A 120.00
C5—N1—C1—S1 177.7 (5) C5A—N1A—C1A—S1A −179.5 (5)
C5—N1—C1—C2 −3.0 (10) C5A—N1A—C1A—C2A −0.5 (10)
C1—N1—C5—C4 3.5 (10) C1A—N1A—C5A—C4A 2.6 (9)
C1—N1—C5—N4 −175.4 (6) C1A—N1A—C5A—N4A 179.1 (6)
S1—C1—C2—C6 −1.5 (10) S1A—C1A—C2A—C6A −3.5 (10)
S1—C1—C2—C3 179.3 (5) S1A—C1A—C2A—C3A 178.0 (5)
N1—C1—C2—C3 0.0 (10) N1A—C1A—C2A—C3A −1.1 (10)
N1—C1—C2—C6 179.2 (6) N1A—C1A—C2A—C6A 177.5 (6)
C1—C2—C3—N3 −178.3 (6) C1A—C2A—C3A—N3A −177.7 (6)
C6—C2—C3—C4 −176.9 (7) C6A—C2A—C3A—C4A −178.1 (6)
C1—C2—C3—C4 2.4 (10) C1A—C2A—C3A—C4A 0.5 (10)
C6—C2—C3—N3 2.4 (10) C6A—C2A—C3A—N3A 3.7 (10)
N3—C3—C4—C5 178.8 (7) N3A—C3A—C4A—C5A 179.8 (6)
C2—C3—C4—C5 −1.9 (10) C2A—C3A—C4A—C5A 1.6 (10)
C3—C4—C5—N4 177.9 (7) C3A—C4A—C5A—N4A −179.4 (6)
C3—C4—C5—N1 −0.9 (11) C3A—C4A—C5A—N1A −3.2 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···S1Ai 0.88 2.44 3.293 (5) 163
N1A—H1A···S1ii 0.88 2.80 3.579 (5) 149
N3—H31···N4Aiii 0.88 2.44 3.300 (8) 165
N3—H32···N2Aiv 0.88 2.39 3.077 (8) 135
N3A—H33···S1Aii 0.88 2.53 3.392 (6) 168
N3A—H34···N2v 0.88 2.20 2.981 (8) 148
N4—H41···S1Ai 0.88 2.75 3.536 (6) 149
N4—H42···S1vi 0.88 2.63 3.424 (6) 151
N4—H42···N2vi 0.88 2.62 3.083 (9) 114
N4A—H44···S1ii 0.88 2.53 3.353 (6) 157
C4—H4···S1vi 0.95 2.74 3.551 (8) 143

Symmetry codes: (i) −x+1, −y+1, z−1/2; (ii) −x+1, −y+2, z+1/2; (iii) x−1/2, −y+1, z−1; (iv) −x+1/2, y, z−1/2; (v) −x+1/2, y, z+1/2; (vi) −x+1/2, y−1, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5399).

References

  1. Abdel-Rahman, A., Bakhite, E. A. & Al-Laifi, E. A. (2002). J. Chin. Chem. Soc. 49, 223–231.
  2. Abu-Shanab, F. A. (1999). J. Chem. Res. (S), 7, 430–431.
  3. Abu-Shanab, F. A., Elkholy, Y. M. & Elnagdi, M. H. (2002). Synth. Commun. 32, 3493–3502.
  4. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  5. Amr, A. E., Mohamed, A. M. & Ibrahim, A. A. (2003). Z. Naturforsch. Teil B, 58, 861–868.
  6. Asadov, K. A., Burangulova, R. N., Guseninov, F. H., Gilmanov, R. Z. & Phaljachov, I. P. (2003). Chem. Heterocycl. Compd, 39, 392–393.
  7. Attaby, F. A., Eldin, S. M. & Abdel-Razik, F. M. (1995). Phosphorus Sulfur Silicon Relat. Elem. 106, 21–28.
  8. Awad, I. M. A., Abdel-rahman, A. E. & Bakhite, E. A. (1962). Phosphorus Sulfur Silicon Relat. Elem. 69, 213–218.
  9. Bruker (2011). SMART, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  10. El-Gaby, M. S. A. (2004). J. Chin. Chem. Soc. 51, 125–134.
  11. Eyduran, F., Özyürek, C., Dilek, N., Ocak Iskeleli, N. & Şendil, K. (2007). Acta Cryst. E63, o2415–o2417.
  12. Fahmy, S. M. & Mohareb, R. M. (1986). Tetrahedron, 42, 687–690.
  13. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  14. Gangiee, A., Devraj, R. & Lin, F. (1991). J. Heterocycl. Chem. 28, 1747–1751.
  15. Guerrera, F., Salerno, L. & Sarva, M. C. (1993). Farmaco (Sci.), 48, 1725–1733. [PubMed]
  16. Krauze, A., Germane, S. & Eberlins, O. (1999). Eur. J. Med. Chem. 34, 301–310.
  17. Miky, J. A. A. & Zahkoug, S. A. (1997). Nat. Prod. Sci. 3, 89–99.
  18. Rao, C. S., Venkaleswarlu, V. & Achaiah, G. (2006). Bioorg. Med. Chem. Lett. 16, 2134–2138. [DOI] [PubMed]
  19. Schmidt, U. & Kubitzek, H. (1960). Chem. Ber. 93, 1559–1571.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  22. Taylor, E. C., Palmer, D. C. & George, T. J. (1983). J. Org. Chem. 48, 4852–4890.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814018029/hg5399sup1.cif

e-70-0o993-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814018029/hg5399Isup2.hkl

e-70-0o993-Isup2.hkl (187.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814018029/hg5399Isup3.cml

. DOI: 10.1107/S1600536814018029/hg5399fig1.tif

The title mol­ecule showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

b . DOI: 10.1107/S1600536814018029/hg5399fig2.tif

Packing viewed down the b axis showing the hydrogen bonding as dashed lines.

CCDC reference: 1018166

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES