Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 1;70(Pt 9):i44. doi: 10.1107/S1600536814011155

Crystal structure of Hg2SO4 – a redetermination

Matthias Weil a,*
PMCID: PMC4186147  PMID: 25309168

Abstract

The crystal structure of mercury(I) sulfate (or mercurous sulfate), Hg2SO4, was re-determined based on modern CCD data. In comparison with the previous determination from Weissenberg film data [Dorm (1969). Acta Chem. Scand. 23, 1607–1615], all atoms were refined with anisotropic displacement parameters, leading to higher precision in terms of bond lengths and angles [e.g. Hg—Hg = 2.5031 (7) compared to 2.500 (3)Å]. The structure consists of alternating rows along [001] of Hg2 2+ dumbbells (generated by inversion symmetry) and SO4 2− tetra­hedra (symmetry 2). The dumbbells are linked via short O—Hg—Hg—O bonds to the sulfate tetra­hedra into chains extending parallel to [20-1]. More remote O—Hg—Hg—O bonds connect these chains into a three-dimensional framework.

Keywords: crystal structure, redetermination, mercurous, Hg/S/O system

Related literature  

Structural data of the previous refinement of Hg2SO4 (Dorm, 1969) were deposited with the ICSD (2014), but contain an error in the z coordinate of the sulfur atom. Other phases in the system Hg/S/O were structurally characterized by Aurivillius & Stålhandske (1980) [HgSO4], Weil (2001) [Hg3(SO4)O2] and Logemann & Wickleder (2013) [Hg(S2O7)]. For a review on Hg—Hg bond lengths in mercurous compounds, see: Weil et al. (2005).

Experimental  

Crystal data  

  • Hg2O4S

  • M r = 497.24

  • Monoclinic, Inline graphic

  • a = 6.2771 (8) Å

  • b = 4.4290 (6) Å

  • c = 8.3596 (10) Å

  • β = 91.695 (4)°

  • V = 232.31 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 66.35 mm−1

  • T = 295 K

  • 0.18 × 0.08 × 0.04 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: numerical (HABITUS; Herrendorf, 1997) T min = 0.012, T max = 0.119

  • 1737 measured reflections

  • 701 independent reflections

  • 629 reflections with I > 2σ(I)’

  • R int = 0.060

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.087

  • S = 1.06

  • 701 reflections

  • 34 parameters

  • Δρmax = 3.57 e Å−3

  • Δρmin = −3.18 e Å−3

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814011155/hb0012sup1.cif

e-70-00i44-sup1.cif (14.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814011155/hb0012Isup2.hkl

e-70-00i44-Isup2.hkl (35KB, hkl)

2 4 . DOI: 10.1107/S1600536814011155/hb0012fig1.tif

The crystal structure of Hg2SO4 in a projection along [010]. Displacement ellipsoids are drawn at the 74% probability level; short Hg—O bonds are displayed with closed black lines, longer Hg—O bonds with open lines.

CCDC reference: 1004277

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Hg—O2i 2.193 (6)
Hg—O2ii 2.518 (6)
Hg—O1iii 2.725 (6)
Hg—O1iv 2.898 (7)
Hg—Hgv 2.5031 (7)
S—O1 1.450 (7)
S—O2 1.509 (6)
O2i—Hg—Hgv 164.47 (14)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The author thanks Berthold Stöger who assisted in the preparative work. The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer.

supplementary crystallographic information

S1. Experimental

1 g HgO was suspended in 20 ml water. 4 ml sulfuric acid (96%wt) and 2 drops CS2 were added to the mixture, transferred into a 50 ml polypropylene beaker that was sealed and heated for 12 h at 393 K. Besides a polycrystalline dirty-white solid with an unknown diffraction pattern, few colourless and transparent single crystals of the title compound were present in the reaction mixture.

S2. Refinement

The coordinates of the previous refinement (Dorm, 1969) were used as starting parameters. The highest and lowest remaining electron density is 0.84 Å and 1.25 Å, respectively, from the Hg atom. It should be noted that in the current version (01/2014) of the Inorganic Structure Data Base (ICSD, 2014), the deposited structure data of the previous refinement by Dorm (1969) contain an error: The z parameter of the sulfur atom must be 1/4, not 3/4.

Figures

Fig. 1.

Fig. 1.

The crystal structure of Hg2SO4 in a projection along [010]. Displacement ellipsoids are drawn at the 74% probability level; short Hg—O bonds are displayed with closed black lines, longer Hg—O bonds with open lines.

Crystal data

Hg2O4S F(000) = 416
Mr = 497.24 Dx = 7.109 Mg m3
Monoclinic, P2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yc Cell parameters from 1233 reflections
a = 6.2771 (8) Å θ = 3.3–30.4°
b = 4.4290 (6) Å µ = 66.35 mm1
c = 8.3596 (10) Å T = 295 K
β = 91.695 (4)° Fragment, colourless
V = 232.31 (5) Å3 0.18 × 0.08 × 0.04 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer 701 independent reflections
Radiation source: fine-focus sealed tube 629 reflections with I > 2σ(I)'
Graphite monochromator Rint = 0.060
ω–scans θmax = 30.4°, θmin = 4.6°
Absorption correction: numerical (HABITUS; Herrendorf, 1997) h = −8→8
Tmin = 0.012, Tmax = 0.119 k = −6→6
1737 measured reflections l = −11→8

Refinement

Refinement on F2 Primary atom site location: isomorphous structure methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.052P)2 + 1.7115P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.035 (Δ/σ)max < 0.001
wR(F2) = 0.087 Δρmax = 3.57 e Å3
S = 1.06 Δρmin = −3.18 e Å3
701 reflections Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
34 parameters Extinction coefficient: 0.0118 (12)
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Hg 0.19318 (5) 0.05289 (9) −0.02034 (4) 0.0275 (2)
S 0.5000 0.5674 (5) 0.2500 0.0134 (5)
O1 0.6943 (11) 0.3901 (16) 0.2586 (8) 0.0224 (12)
O2 0.5038 (9) 0.7720 (13) 0.1058 (6) 0.0172 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg 0.0119 (2) 0.0392 (3) 0.0315 (3) −0.00369 (11) 0.00211 (13) 0.00072 (13)
S 0.0125 (12) 0.0141 (11) 0.0136 (11) 0.000 0.0000 (8) 0.000
O1 0.018 (3) 0.027 (3) 0.022 (3) 0.009 (2) −0.001 (2) 0.004 (2)
O2 0.015 (2) 0.020 (2) 0.016 (2) 0.001 (2) 0.0010 (18) 0.004 (2)

Geometric parameters (Å, º)

Hg—O2i 2.193 (6) S—Hgiii 3.7082 (15)
Hg—O2ii 2.518 (6) S—Hgix 3.8936 (17)
Hg—O1iii 2.725 (6) S—Hgiv 3.8936 (17)
Hg—O1iv 2.898 (7) O1—Hgiii 2.725 (6)
Hg—Hgv 2.5031 (7) O1—Hgiv 2.898 (7)
S—O1iii 1.450 (7) O1—Hgi 3.261 (7)
S—O1 1.450 (7) O1—Hgvii 3.716 (7)
S—O2iii 1.509 (6) O1—Hgx 4.090 (6)
S—O2 1.509 (6) O2—Hgi 2.193 (6)
S—Hgvi 3.2315 (13) O2—Hgviii 2.518 (6)
S—Hgi 3.2315 (13) O2—Hgvi 3.812 (5)
S—Hgvii 3.6309 (15) O2—Hgvii 4.097 (6)
S—Hgviii 3.6309 (15)
O2i—Hg—Hgv 164.47 (14) S—O1—Hgx 156.0 (3)
O2i—Hg—O2ii 69.1 (2) Hgiii—O1—Hgx 36.63 (8)
Hgv—Hg—O2ii 126.30 (13) Hgiv—O1—Hgx 77.69 (14)
O2i—Hg—O1iii 82.0 (2) Hgi—O1—Hgx 117.52 (19)
Hgv—Hg—O1iii 102.86 (14) Hgvii—O1—Hgx 89.04 (14)
O2ii—Hg—O1iii 75.8 (2) S—O1—Hg 62.8 (3)
O2i—Hg—O1iv 77.5 (2) Hgiii—O1—Hg 115.4 (2)
Hgv—Hg—O1iv 102.91 (14) Hgiv—O1—Hg 64.22 (13)
O2ii—Hg—O1iv 75.64 (18) Hgi—O1—Hg 95.95 (15)
O1iii—Hg—O1iv 149.3 (3) Hgvii—O1—Hg 138.14 (18)
O1iii—S—O1 114.5 (6) Hgx—O1—Hg 129.82 (18)
O1iii—S—O2iii 109.4 (3) S—O2—Hgi 120.5 (3)
O1—S—O2iii 108.6 (4) S—O2—Hgviii 126.9 (3)
O1iii—S—O2 108.6 (4) Hgi—O2—Hgviii 110.9 (2)
O1—S—O2 109.4 (3) S—O2—Hgvi 56.41 (19)
O2iii—S—O2 106.2 (5) Hgi—O2—Hgvi 131.7 (2)
S—O1—Hgiii 122.3 (4) Hgviii—O2—Hgvi 80.47 (14)
S—O1—Hgiv 123.6 (4) S—O2—Hg 72.7 (2)
Hgiii—O1—Hgiv 96.8 (2) Hgi—O2—Hg 129.6 (2)
S—O1—Hgi 76.0 (3) Hgviii—O2—Hg 85.11 (15)
Hgiii—O1—Hgi 148.1 (3) Hgvi—O2—Hg 97.20 (13)
Hgiv—O1—Hgi 91.77 (18) S—O2—Hgvii 61.6 (2)
S—O1—Hgvii 75.3 (3) Hgi—O2—Hgvii 77.46 (15)
Hgiii—O1—Hgvii 85.41 (17) Hgviii—O2—Hgvii 122.59 (19)
Hgiv—O1—Hgvii 153.3 (2) Hgvi—O2—Hgvii 58.72 (8)
Hgi—O1—Hgvii 73.82 (14) Hg—O2—Hgvii 134.35 (14)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y−1, z; (iii) −x+1, y, −z+1/2; (iv) −x+1, −y, −z; (v) −x, −y, −z; (vi) x, −y+1, z+1/2; (vii) −x+1, y+1, −z+1/2; (viii) x, y+1, z; (ix) x, −y, z+1/2; (x) x+1, −y, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB0012).

References

  1. Aurivillius, K. & Stålhandske, C. (1980). Z. Kristallogr. 153, 121–129.
  2. Bruker (2005). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dorm, E. (1969). Acta Chem. Scand. 23, 1607–1615.
  4. Dowty, E. (2006). ATOMS Shape Software, Kingsport, Tennessee, USA.
  5. Herrendorf (1997). HABITUS University of Giessen, Germany.
  6. ICSD (2014). Inorganic Crystal Structure Database, FIZ-Karlsruhe, Germany. http://www.fiz-karlsruhe.de/icsd_home.html
  7. Logemann, C. & Wickleder, M. S. (2013). Z. Kristallogr. New Cryst. Struct. 228, 161–162.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Weil, M. (2001). Acta Cryst. E57, i98–i100.
  10. Weil, M., Tillmanns, E. & Pushcharovsky, D. Yu. (2005). Inorg. Chem. 44, 1443–1451. [DOI] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814011155/hb0012sup1.cif

e-70-00i44-sup1.cif (14.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814011155/hb0012Isup2.hkl

e-70-00i44-Isup2.hkl (35KB, hkl)

2 4 . DOI: 10.1107/S1600536814011155/hb0012fig1.tif

The crystal structure of Hg2SO4 in a projection along [010]. Displacement ellipsoids are drawn at the 74% probability level; short Hg—O bonds are displayed with closed black lines, longer Hg—O bonds with open lines.

CCDC reference: 1004277

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES