Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 30;70(Pt 9):o1075–o1076. doi: 10.1107/S1600536814018984

Crystal structure of 5-[bis­(4-eth­oxy­phenyl)amino]­thio­phene-2-carbaldehyde

Jing-Yun Tan a,b, Ming Kong a,b, Jie-Ying Wu a,b,*
PMCID: PMC4186151  PMID: 25309233

Abstract

In the title compound, C21H21NO3S, the planes of the two benzene rings are nearly perpendicular to one another [dihedral angle = 84.50 (10)°] and they are oriented with respect to the plane of the thio­phene ring at dihedral angles of 59.15 (9) and 66.61 (9)°. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming supra­molecular chains propagating along the b-axis direction.

Keywords: crystal structure, thio­phene-2-carbaldehyde, hydrogen bonding, supra­molecular chains

Related literature  

For applications of thio­phene derivatives, see: Justin Thomas et al. (2008); Hansel et al. (2003); Mazzeo et al. (2003); Zhan et al. (2007); Bedworth et al. (1996); Raposo et al. (2011); Takekuma et al. (2005); Wurthner et al. (2002). For a related structure, see: Li et al. (2013).graphic file with name e-70-o1075-scheme1.jpg

Experimental  

Crystal data  

  • C21H21NO3S

  • M r = 367.45

  • Monoclinic, Inline graphic

  • a = 11.101 (3) Å

  • b = 10.457 (3) Å

  • c = 17.326 (5) Å

  • β = 104.473 (4)°

  • V = 1947.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Bruker, 2002) T min = 0.946, T max = 0.964

  • 13574 measured reflections

  • 3430 independent reflections

  • 2596 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.134

  • S = 0.93

  • 3430 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S1600536814018984/xu5814sup1.cif

e-70-o1075-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814018984/xu5814Isup2.hkl

e-70-o1075-Isup2.hkl (168.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814018984/xu5814Isup3.cml

. DOI: 10.1107/S1600536814018984/xu5814fig1.tif

The mol­ecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms

. DOI: 10.1107/S1600536814018984/xu5814fig2.tif

The infinite one-dimensional linear chain structure.

CCDC reference: 1016303

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O3i 0.97 2.55 3.470 (3) 159

Symmetry code: (i) Inline graphic.

Acknowledgments

The work was supported by the National Natural Science Foundation of China (grant Nos. 21271004 and 51372003) and the Natural Science Foundation of Anhui Province (grant No. 1208085MB22).

supplementary crystallographic information

S1. Comment

Due to the outstanding electronic tenability and considerable chemical and environmental stability, thiophene derivatives have been widely used in solar cells (Justin Thomas et al., 2008; Hansel et al., 2003), organic light-emitting diodes (OLEDs) (Mazzeo et al., 2003), organic field-effect transistors (OFETs) (Zhan et al., 2007) and NLO devices (Bedworth et al., 1996; Raposo et al., 2011). Among them, the research of thiophene carboxaldehyde, which is an extremely important intermediate, is abundant (Takekuma et al., 2005; Wurthner et al., 2002). In this paper, a novel thiophene carboxaldehyde derivative, 5-(bis(4-ethoxyphenyl)amino)thiophene-2-carbaldehyde (Fig.1), was synthesized.

It possesses typical propeller structure, just the same with other triarylamine. The carbonyl group is coplanar with the thiophene ring, which indicates well conjugation. As shown in Fig.2, for the existence of intermolecular C2—H2A···O3 hydrogen bond, the one-dimensional linear chain structure was formed along b axis.

S2. Experimental

The intermediate bis(4-ethoxyphenyl)amine was synthesized according to following procedure. Cuprous iodide (0.95 g, 5 mmol), L-Proline (1.15 g, 10 mmol) and anhydrous potassium carbonate (13.8 g, 100 mmol) were placed in an oven-dried 250 ml Schlenk flask. The reaction vessel was evacuated and filled with prepurified argon, a process which was repeated three times. Then refined dimethylsulfoxide (100 ml) was added with a syringe under a counterflow of argon. After that, 4-Iodophenetole (12.5 g, 50 mmol), Phenetidine (8.23 g, 60 mmol) and a particle of 18-Crown-6 (0.1981 g, 0.75 mmol) were added. The reaction was stirred at 90 degrees celsius for 24 h. Upon completion of the reaction, the mixture was cooled to room temperature. The mixture was filtered through a Buchner funnel to remove the deposition. Then diluted with water (500 ml) and stirred for one day. A kind of grey educt were obtained after separate the water by a Buchner funnel again. Purification of the residue by column chromatography on silica gel (petroleum ether/ethyl acetate = 40:1) gave bis(4-ethoxyphenyl)amine as white powder, with yield of 41.3%. M.p.= 89 degrees celsius. 1H NMR: (400 MHz, DMSO-d6), d(p.p.m.): 1.33 (t, 6H), 3.93 (q,4H), 5.61 (s, 1H), 6.80 (d, 4H), 6.96 (d, 4H).

The synthesis of the title compound. Phenanthroline (0.45 g, 2.3 mmol), cuprous iodide (0.46 g, 2.4 mmol), anhydrous potassium carbonate (5.00 g, 36 mmol) and bis(4-ethoxyphenyl)amine (3.09 g, 12 mmol) were placed in an oven-dried 250 ml Schlenk flask. The reaction vessel was evacuated and filled with prepurified argon, a process which was repeated three times. Then refined dimethylsulfoxide (120 ml) and 1.90 g 5-Bromo-2-thiophenecarbalde-hyde (10 mmol) were added with a syringe under a counterflow of argon. At last, a particle of 18-Crown-6 (0.0396 g, 0.15 mmol) and two drops of Aliquat336 (0.0200 g, 0.05 mmol) were added. The reaction was stirred at 90 degrees celsius for 48 h. Upon completion of the reaction, the mixture was cooled to room temperature. The mixture was filtered through a Buchner funnel to remove the deposition. Then diluted with water (500 ml) and stirred for one day. A kind of yellowish-brown educt were obtained after separate the water by a Buchner funnel again. Purification of the residue by column chromatography on silica gel (Petroleum/Ethyl Acetate = 20:1) gave title compound as yellowish-brown particle, with yield of 45%. m.p.= 101 degrees celsius. 1H NMR: (400 MHz, d-chloroform), d(p.p.m.): 1.42 (t, 6H), 4.04 (q, 4H), 6.17 (d,1H), 6.88 (d, 4H), 7.22 (d, 4H), 7.41 (d, 1H), 9.53 (s, 1H). 13C NMR(150 MHz, d6-acetone): d(p.p.m.): 14.81, 63.77, 109.09, 115.54, 127.17, 127.99, 128.55, 138.71, 157.39, 166.42, 180.95. IR (KBr, cm-1): 3058 (w), 2976 (m), 2931 (w), 2895 (w), 2790 (w), 1627 (s), 1508 (s), 1443 (vs), 1420 (m), 1392 (m), 1353 (m), 1244 (s), 1175 (m), 1054 (m), 824 (m).

S3. Refinement

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å, Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms

Fig. 2.

Fig. 2.

The infinite one-dimensional linear chain structure.

Crystal data

C21H21NO3S F(000) = 776
Mr = 367.45 Dx = 1.253 Mg m3
Monoclinic, P21/c Melting point: 374 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 11.101 (3) Å Cell parameters from 3509 reflections
b = 10.457 (3) Å θ = 2.3–24.1°
c = 17.326 (5) Å µ = 0.19 mm1
β = 104.473 (4)° T = 296 K
V = 1947.5 (10) Å3 Block, brown
Z = 4 0.30 × 0.20 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3430 independent reflections
Radiation source: fine-focus sealed tube 2596 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
phi and ω scans θmax = 25.0°, θmin = 1.9°
Absorption correction: ψ scan (SADABS; Bruker, 2002) h = −13→13
Tmin = 0.946, Tmax = 0.964 k = −12→12
13574 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
3430 reflections (Δ/σ)max < 0.001
237 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4645 (2) 0.2539 (2) −0.07326 (14) 0.0795 (8)
H1A 0.3875 0.2164 −0.1023 0.119*
H1B 0.5294 0.1910 −0.0652 0.119*
H1C 0.4851 0.3245 −0.1030 0.119*
C2 0.4511 (2) 0.3002 (2) 0.00542 (12) 0.0613 (6)
H2A 0.4353 0.2288 0.0373 0.074*
H2B 0.5269 0.3425 0.0341 0.074*
C3 0.32106 (17) 0.44336 (17) 0.05611 (10) 0.0441 (4)
C4 0.22779 (19) 0.53578 (19) 0.04076 (11) 0.0528 (5)
H4 0.1875 0.5558 −0.0116 0.063*
C5 0.19465 (19) 0.59780 (19) 0.10249 (11) 0.0507 (5)
H5 0.1314 0.6585 0.0919 0.061*
C6 0.37954 (18) 0.41280 (18) 0.13421 (10) 0.0455 (5)
H6 0.4409 0.3502 0.1451 0.055*
C7 0.34628 (16) 0.47574 (18) 0.19585 (10) 0.0430 (4)
H7 0.3853 0.4547 0.2483 0.052*
C8 0.25621 (17) 0.56915 (17) 0.18073 (10) 0.0412 (4)
C9 0.0530 (2) 0.2588 (2) 0.59350 (13) 0.0724 (7)
H9A −0.0314 0.2883 0.5840 0.109*
H9B 0.0908 0.2592 0.6497 0.109*
H9C 0.0537 0.1733 0.5733 0.109*
C10 0.1249 (2) 0.3460 (2) 0.55176 (12) 0.0575 (6)
H10A 0.1263 0.4323 0.5725 0.069*
H10B 0.2100 0.3163 0.5602 0.069*
C11 0.11284 (18) 0.4174 (2) 0.41918 (11) 0.0499 (5)
C12 0.21873 (17) 0.49193 (19) 0.44138 (11) 0.0514 (5)
H12 0.2638 0.4942 0.4944 0.062*
C13 0.25766 (17) 0.56310 (19) 0.38494 (11) 0.0486 (5)
H13 0.3301 0.6115 0.4000 0.058*
C14 0.0478 (2) 0.4155 (2) 0.34026 (12) 0.0660 (7)
H14 −0.0225 0.3642 0.3245 0.079*
C15 0.08529 (19) 0.4883 (2) 0.28423 (11) 0.0586 (6)
H15 0.0396 0.4870 0.2313 0.070*
C16 0.19027 (17) 0.56314 (18) 0.30648 (10) 0.0427 (5)
C17 0.25459 (15) 0.76413 (19) 0.25697 (9) 0.0397 (4)
C18 0.22906 (18) 0.84674 (18) 0.31280 (11) 0.0460 (5)
H18 0.1903 0.8222 0.3522 0.055*
C19 0.26784 (18) 0.97091 (18) 0.30347 (11) 0.0499 (5)
H19 0.2577 1.0379 0.3366 0.060*
C20 0.32226 (17) 0.98624 (18) 0.24143 (10) 0.0462 (5)
C21 0.3744 (2) 1.0975 (2) 0.21472 (12) 0.0575 (5)
H21 0.3685 1.1741 0.2408 0.069*
N1 0.22787 (14) 0.63697 (15) 0.24656 (8) 0.0450 (4)
O1 0.34853 (14) 0.38830 (14) −0.00900 (7) 0.0573 (4)
O2 0.06415 (13) 0.34394 (14) 0.46905 (8) 0.0646 (4)
O3 0.42616 (15) 1.09978 (15) 0.16028 (9) 0.0707 (5)
S1 0.32839 (5) 0.84196 (5) 0.19335 (3) 0.0468 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.109 (2) 0.0737 (17) 0.0733 (15) 0.0184 (15) 0.0560 (15) 0.0055 (13)
C2 0.0756 (15) 0.0578 (13) 0.0612 (13) 0.0155 (12) 0.0369 (11) 0.0063 (11)
C3 0.0560 (12) 0.0403 (10) 0.0406 (9) −0.0024 (9) 0.0208 (9) −0.0021 (8)
C4 0.0657 (13) 0.0565 (13) 0.0369 (9) 0.0115 (10) 0.0142 (9) 0.0030 (9)
C5 0.0577 (12) 0.0504 (12) 0.0446 (10) 0.0109 (10) 0.0143 (9) 0.0024 (9)
C6 0.0505 (11) 0.0409 (11) 0.0479 (11) 0.0044 (9) 0.0176 (9) 0.0057 (8)
C7 0.0510 (11) 0.0421 (11) 0.0377 (9) −0.0011 (9) 0.0143 (8) 0.0033 (8)
C8 0.0492 (11) 0.0393 (10) 0.0394 (9) −0.0047 (8) 0.0192 (8) −0.0039 (8)
C9 0.0796 (16) 0.0772 (17) 0.0695 (15) 0.0054 (13) 0.0353 (13) 0.0250 (13)
C10 0.0575 (13) 0.0674 (15) 0.0503 (12) 0.0064 (11) 0.0184 (10) 0.0179 (10)
C11 0.0493 (12) 0.0556 (13) 0.0482 (11) −0.0079 (9) 0.0186 (9) 0.0051 (9)
C12 0.0481 (11) 0.0600 (13) 0.0435 (10) −0.0046 (10) 0.0066 (9) 0.0085 (9)
C13 0.0437 (11) 0.0526 (12) 0.0490 (11) −0.0091 (9) 0.0108 (9) 0.0030 (9)
C14 0.0627 (14) 0.0834 (18) 0.0522 (12) −0.0346 (12) 0.0149 (10) 0.0007 (11)
C15 0.0595 (13) 0.0761 (15) 0.0400 (10) −0.0205 (11) 0.0120 (9) −0.0005 (10)
C16 0.0483 (11) 0.0436 (11) 0.0406 (9) −0.0028 (8) 0.0192 (8) −0.0010 (8)
C17 0.0399 (10) 0.0442 (11) 0.0361 (9) 0.0000 (8) 0.0118 (8) 0.0005 (8)
C18 0.0537 (12) 0.0484 (12) 0.0404 (10) −0.0014 (9) 0.0201 (9) −0.0033 (8)
C19 0.0617 (13) 0.0432 (11) 0.0459 (10) 0.0005 (9) 0.0154 (9) −0.0083 (9)
C20 0.0526 (11) 0.0420 (11) 0.0436 (10) 0.0004 (9) 0.0113 (9) 0.0017 (8)
C21 0.0712 (14) 0.0447 (12) 0.0538 (12) −0.0011 (10) 0.0105 (11) 0.0070 (10)
N1 0.0576 (10) 0.0412 (9) 0.0430 (9) −0.0053 (7) 0.0254 (8) −0.0027 (7)
O1 0.0763 (10) 0.0586 (9) 0.0431 (7) 0.0152 (8) 0.0264 (7) −0.0011 (6)
O2 0.0617 (10) 0.0802 (11) 0.0531 (9) −0.0194 (8) 0.0167 (7) 0.0158 (7)
O3 0.0902 (12) 0.0585 (10) 0.0688 (10) −0.0028 (8) 0.0300 (9) 0.0201 (8)
S1 0.0575 (3) 0.0437 (3) 0.0457 (3) −0.0001 (2) 0.0254 (2) 0.0024 (2)

Geometric parameters (Å, º)

C1—C2 1.488 (3) C10—H10B 0.9700
C1—H1A 0.9600 C11—O2 1.364 (2)
C1—H1B 0.9600 C11—C14 1.378 (3)
C1—H1C 0.9600 C11—C12 1.383 (3)
C2—O1 1.437 (2) C12—C13 1.381 (2)
C2—H2A 0.9700 C12—H12 0.9300
C2—H2B 0.9700 C13—C16 1.378 (2)
C3—O1 1.367 (2) C13—H13 0.9300
C3—C6 1.384 (2) C14—C15 1.378 (3)
C3—C4 1.393 (3) C14—H14 0.9300
C4—C5 1.377 (2) C15—C16 1.376 (3)
C4—H4 0.9300 C15—H15 0.9300
C5—C8 1.390 (2) C16—N1 1.437 (2)
C5—H5 0.9300 C17—N1 1.364 (3)
C6—C7 1.381 (2) C17—C18 1.378 (2)
C6—H6 0.9300 C17—S1 1.7321 (17)
C7—C8 1.375 (3) C18—C19 1.390 (3)
C7—H7 0.9300 C18—H18 0.9300
C8—N1 1.443 (2) C19—C20 1.368 (2)
C9—C10 1.510 (3) C19—H19 0.9300
C9—H9A 0.9600 C20—C21 1.427 (3)
C9—H9B 0.9600 C20—S1 1.7330 (19)
C9—H9C 0.9600 C21—O3 1.221 (2)
C10—O2 1.423 (2) C21—H21 0.9300
C10—H10A 0.9700
C2—C1—H1A 109.5 H10A—C10—H10B 108.5
C2—C1—H1B 109.5 O2—C11—C14 115.37 (17)
H1A—C1—H1B 109.5 O2—C11—C12 125.80 (17)
C2—C1—H1C 109.5 C14—C11—C12 118.83 (17)
H1A—C1—H1C 109.5 C13—C12—C11 120.11 (17)
H1B—C1—H1C 109.5 C13—C12—H12 119.9
O1—C2—C1 107.78 (18) C11—C12—H12 119.9
O1—C2—H2A 110.2 C16—C13—C12 120.64 (17)
C1—C2—H2A 110.2 C16—C13—H13 119.7
O1—C2—H2B 110.2 C12—C13—H13 119.7
C1—C2—H2B 110.2 C15—C14—C11 121.07 (19)
H2A—C2—H2B 108.5 C15—C14—H14 119.5
O1—C3—C6 124.24 (17) C11—C14—H14 119.5
O1—C3—C4 116.30 (16) C16—C15—C14 120.04 (18)
C6—C3—C4 119.45 (16) C16—C15—H15 120.0
C5—C4—C3 120.57 (17) C14—C15—H15 120.0
C5—C4—H4 119.7 C15—C16—C13 119.28 (17)
C3—C4—H4 119.7 C15—C16—N1 118.78 (16)
C4—C5—C8 119.62 (18) C13—C16—N1 121.92 (16)
C4—C5—H5 120.2 N1—C17—C18 128.87 (16)
C8—C5—H5 120.2 N1—C17—S1 119.71 (13)
C7—C6—C3 119.69 (17) C18—C17—S1 111.41 (15)
C7—C6—H6 120.2 C17—C18—C19 112.33 (17)
C3—C6—H6 120.2 C17—C18—H18 123.8
C8—C7—C6 120.89 (16) C19—C18—H18 123.8
C8—C7—H7 119.6 C20—C19—C18 114.29 (17)
C6—C7—H7 119.6 C20—C19—H19 122.9
C7—C8—C5 119.72 (16) C18—C19—H19 122.9
C7—C8—N1 119.36 (15) C19—C20—C21 130.17 (19)
C5—C8—N1 120.92 (17) C19—C20—S1 110.73 (14)
C10—C9—H9A 109.5 C21—C20—S1 119.08 (15)
C10—C9—H9B 109.5 O3—C21—C20 125.0 (2)
H9A—C9—H9B 109.5 O3—C21—H21 117.5
C10—C9—H9C 109.5 C20—C21—H21 117.5
H9A—C9—H9C 109.5 C17—N1—C16 121.39 (14)
H9B—C9—H9C 109.5 C17—N1—C8 120.02 (14)
O2—C10—C9 107.39 (18) C16—N1—C8 117.85 (15)
O2—C10—H10A 110.2 C3—O1—C2 117.19 (15)
C9—C10—H10A 110.2 C11—O2—C10 117.79 (15)
O2—C10—H10B 110.2 C17—S1—C20 91.23 (9)
C9—C10—H10B 110.2
O1—C3—C4—C5 −179.17 (18) C19—C20—C21—O3 176.6 (2)
C6—C3—C4—C5 0.8 (3) S1—C20—C21—O3 −1.2 (3)
C3—C4—C5—C8 1.0 (3) C18—C17—N1—C16 −13.9 (3)
O1—C3—C6—C7 178.88 (17) S1—C17—N1—C16 167.25 (13)
C4—C3—C6—C7 −1.1 (3) C18—C17—N1—C8 176.16 (18)
C3—C6—C7—C8 −0.4 (3) S1—C17—N1—C8 −2.7 (2)
C6—C7—C8—C5 2.2 (3) C15—C16—N1—C17 130.0 (2)
C6—C7—C8—N1 −177.18 (16) C13—C16—N1—C17 −51.4 (3)
C4—C5—C8—C7 −2.5 (3) C15—C16—N1—C8 −59.9 (2)
C4—C5—C8—N1 176.91 (17) C13—C16—N1—C8 118.7 (2)
O2—C11—C12—C13 −179.35 (19) C7—C8—N1—C17 113.3 (2)
C14—C11—C12—C13 0.1 (3) C5—C8—N1—C17 −66.1 (2)
C11—C12—C13—C16 1.5 (3) C7—C8—N1—C16 −57.0 (2)
O2—C11—C14—C15 178.1 (2) C5—C8—N1—C16 123.60 (19)
C12—C11—C14—C15 −1.4 (4) C6—C3—O1—C2 −4.8 (3)
C11—C14—C15—C16 1.0 (4) C4—C3—O1—C2 175.18 (17)
C14—C15—C16—C13 0.7 (3) C1—C2—O1—C3 −179.38 (18)
C14—C15—C16—N1 179.3 (2) C14—C11—O2—C10 −177.71 (19)
C12—C13—C16—C15 −1.9 (3) C12—C11—O2—C10 1.8 (3)
C12—C13—C16—N1 179.50 (18) C9—C10—O2—C11 179.51 (18)
N1—C17—C18—C19 −178.39 (18) N1—C17—S1—C20 178.13 (15)
S1—C17—C18—C19 0.5 (2) C18—C17—S1—C20 −0.88 (14)
C17—C18—C19—C20 0.3 (3) C19—C20—S1—C17 1.03 (15)
C18—C19—C20—C21 −178.9 (2) C21—C20—S1—C17 179.24 (16)
C18—C19—C20—S1 −1.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O3i 0.97 2.55 3.470 (3) 159

Symmetry code: (i) x, y−1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5814).

References

  1. Bedworth, P. V., Cai, Y., Jen, A. & Marder, S. R. (1996). J. Org. Chem. 61, o2242–o2246.
  2. Bruker (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Hansel, H., Zettl, H., Krausch, G., Kisselev, R., Thelakkat, M. & Schmidt, H. W. (2003). Adv. Mater. 15, 2056–2060.
  5. Justin Thomas, K. R., Hsu, Y. C., Lin, J. T., Lee, K. M., Ho, K. C., Lai, C. H., Cheng, Y. M. & Chou, P. T. (2008). Chem. Mater. 20, 1830–1840.
  6. Li, R., Li, D.-D. & Wu, J.-Y. (2013). Acta Cryst. E69, o1405. [DOI] [PMC free article] [PubMed]
  7. Mazzeo, M., Vitale, V., Della Sala, F., Pisignano, D., Anni, M., Barbarella, G., Favaretto, L., Zanelli, A., Cingolani, R. & Gigli, G. (2003). Adv. Mater. 15, 2060–2063.
  8. Raposo, M. M. M., Fonseca, A. M. C., Castro, M. C. R., Belsley, M., Cardoso, M. F. S., Carvalho, L. M. & Coelho, P. J. (2011). Dyes Pigm. 91, 62–73.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Takekuma, S. I., Takahashi, K., Sakaguchi, A., Shibata, Y., Sasaki, M., Minematsu, T. & Takekuma, H. (2005). Tetrahedron, 61, 10349–10362.
  11. Wurthner, F., Yao, S., Debaerdemaeker, T. & Wortmann, R. (2002). J. Am. Chem. Soc. 124, 9431–9447. [DOI] [PubMed]
  12. Zhan, X., Tan, Z.-A., Domercq, B., An, Z., Zhang, X., Barlow, S., Li, Y.-F., Zhu, D.-B., Kippelen, B. & Marder, S. R. (2007). J. Am. Chem. Soc. 129, 7246–7247. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S1600536814018984/xu5814sup1.cif

e-70-o1075-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814018984/xu5814Isup2.hkl

e-70-o1075-Isup2.hkl (168.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814018984/xu5814Isup3.cml

. DOI: 10.1107/S1600536814018984/xu5814fig1.tif

The mol­ecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms

. DOI: 10.1107/S1600536814018984/xu5814fig2.tif

The infinite one-dimensional linear chain structure.

CCDC reference: 1016303

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES