Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 30;70(Pt 9):o1061–o1062. doi: 10.1107/S1600536814019060

Crystal structure of 3,5-bis­(4-chloro­phen­yl)-1-propyl-1,3,5-tri­aza­cyclo­hexane

Leila Lefrada a,b, Ahcene Bouchemma a,b, Sofiane Bouacida c,b,*, Nicolas Claiser d, Mohamed Souhassou d
PMCID: PMC4186157  PMID: 25309226

Abstract

In the title mol­ecule, C18H21Cl2N3, the tri­aza­cyclo­hexane ring adopts a chair conformation with both 4-chloro­phenyl substituents in axial positions and the propyl group in an equatorial site. The dihedral angle between the planes of the benzene rings is 49.5 (1)°. In the crystal, mol­ecules are arranged in a head-to-tail fashion, forming columns along [010], and pairs of weak C—H⋯π inter­actions form inversion dimers between columns.

Keywords: crystal structure, tri­aza­cyclo­hexa­ne, C—H⋯π inter­actions

Related literature  

For conformations of 1,3,5-triaryl derivatives of 1,3,5-tri­aza­cyclo­hexane, see: Baker et al. (1978); Bouchemma et al. (1989, 1990); Bushweller (1995); Kleinpeter et al. (2005); Duke et al. (1973); Gilardi et al. (2003); Giumanini et al. (1985); Latreche et al. (2006); Mloston et al. (2006); Freeman et al. (2005); Wiberg et al. (1999).graphic file with name e-70-o1061-scheme1.jpg

Experimental  

Crystal data  

  • C18H21Cl2N3

  • M r = 350.28

  • Triclinic, Inline graphic

  • a = 6.0785 (3) Å

  • b = 10.3190 (6) Å

  • c = 14.4360 (8) Å

  • α = 91.570 (3)°

  • β = 91.946 (2)°

  • γ = 99.055 (3)°

  • V = 893.19 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 295 K

  • 0.22 × 0.13 × 0.07 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.274, T max = 0.467

  • 13643 measured reflections

  • 3448 independent reflections

  • 2751 reflections with I > 2σ(I)

  • R int = 0.016

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.142

  • S = 1.03

  • 3448 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: COLLECT (Nonius, 1997); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814019060/lh5723sup1.cif

e-70-o1061-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814019060/lh5723Isup2.hkl

e-70-o1061-Isup2.hkl (165.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814019060/lh5723Isup3.cml

. DOI: 10.1107/S1600536814019060/lh5723fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

. DOI: 10.1107/S1600536814019060/lh5723fig2.tif

Part of the crystal structure of the title compound showing the ’head to tail’ arrangement of mol­ecules arranged in columns.

CCDC reference: 1020727

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is centroid of C21–C26 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2ACg i 0.96 2.92 3.668 (3) 134

Symmetry code: (i) Inline graphic.

Acknowledgments

This work is supported by laboratory LCATM, Université Oum El Bouaghi, Algeria. Thanks are due to MESRS (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique, Algeria) for financial support.

supplementary crystallographic information

S1. Comment

The conformational behaviour of substituted cyclohexanes as well as heterocyclohexanes has been the subject of numerous studies (Bushweller, 1995). The ring normally adopts the chair conformation unless specific intramolecular interactions stabilize the twist (Kleinpeter et al., 2005) or boat conformers (Freeman et al., 2005). Saturated six-membered rings are prevalent in organic chemistry. For cyclohexane, experimental and computational studies have established that the chair conformation is 5.5 kcal/ mol more stable than the twist form (Wiberg et al., 1999). N,N',N''-Trisubstituted 1,3,5-triazinanes are of interest as precursors for the preparation of different N-substituted imidazoles (Mloston et al., 2006). The heterocyclic nucleus is expected to adopt a chair conformation and four distinct patterns of substituent orientation have to be considered, eee, eea, eaa and aaa, where e = equatorial and a = axial, with each of the conformers having axial repulsions involving the substituents or lone pairs of electrons on the N atoms. Several 1,3,5-trialkyl derivatives have been investigated in solution by dipole moment measurements and the results interpreted in terms of the eee conformer, the eea conformer (Baker et al., 1978), and varying amounts of the eee, eea and eaa conformers (Duke et al., 1973). Various 1,3,5-triaryl-1,3,5-triazacyclohexanes adopt the diaxial-equatorial orientation of substituents in the solid state thus avoiding 1,3-diaxial lone-pair repulsions (Giumanini et al. 1985; Gilardi et al. 2003 Bouchemma et al. 1989; 1990).

In the present work, a new derivate (I) of triazacyclohexane is reported and molecular structure is shown in Fig. 1. The 1,3,5-triazacycolohexane ring is in a chair conformation which is typical of this ring (Gilardi et al. 2003). The stucture of a similar compound viz 1-propyl-3-5-bis-(4-fluorophenyl)-1,3,5- triazacycolohexane (II) has been reported (Latreche et al. 2006). In both (I) and (II) the heterocyclic rings adopt chair conformations with two fluorophenyl substituents situated in axial positions and a third group (propyl) equatorial. The dihedral angle between the benzene rings (C11-C16/C21-C26) is 49.5 (1)°. In the crystal, molecules are arranged in a 'head to tail' fashion forming columns along [010] (see Fig. 2) and pairs weak C—H···π interactions form inversion dimers between columns.

S2. Experimental

The title compound was obtained by mixing a 2:1:1 stoichiometric ratio of propylamine and 4-chloroaniline with formalin in ethanol (25 ml) at 293K. The resulting solution was evaporated on a rotary evaporator to dryness and the white residue was recrystallized from cyclohexane.

S3. Refinement

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were located in differnce Fourier maps but introduced in calculated positions and treated as riding on their parent C atom, with C—H distances of 0.93 Å (Caromatic), 0.97 Å (Cmethylene) and 0.96 Å (Cmethyl) with Uiso(H) = 1.2 Ueq(Caromatic and Cmethylene) or 1.5 Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound showing the 'head to tail' arrangement of molecules arranged in columns.

Crystal data

C18H21Cl2N3 Z = 2
Mr = 350.28 F(000) = 368
Triclinic, P1 Dx = 1.302 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.0785 (3) Å Cell parameters from 13346 reflections
b = 10.3190 (6) Å θ = 1.5–27.3°
c = 14.4360 (8) Å µ = 0.37 mm1
α = 91.570 (3)° T = 295 K
β = 91.946 (2)° Prism, colourless
γ = 99.055 (3)° 0.22 × 0.13 × 0.07 mm
V = 893.19 (8) Å3

Data collection

Nonius KappaCCD diffractometer 2751 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.016
ω and φ scans θmax = 27.3°, θmin = 1.4°
Absorption correction: multi-scan (Blessing, 1995) h = −7→7
Tmin = 0.274, Tmax = 0.467 k = −12→12
13643 measured reflections l = −17→17
3448 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.413P] where P = (Fo2 + 2Fc2)/3
3448 reflections (Δ/σ)max < 0.001
209 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.3001 (4) 0.4766 (3) 0.25020 (16) 0.0613 (6)
H1A −0.3547 0.383 0.2459 0.074*
H1B −0.4281 0.5221 0.2505 0.074*
C2 −0.0783 (4) 0.6456 (2) 0.34207 (17) 0.0633 (6)
H2A 0.0103 0.6653 0.3993 0.076*
H2B −0.1997 0.6964 0.3432 0.076*
C3 −0.0772 (5) 0.6525 (2) 0.17830 (18) 0.0652 (6)
H3A −0.1979 0.7039 0.1778 0.078*
H3B 0.013 0.6767 0.1254 0.078*
C4 0.1485 (6) 0.8253 (3) 0.2756 (2) 0.0847 (8)
H4A 0.0283 0.8751 0.2638 0.102*
H4B 0.2019 0.8438 0.3394 0.102*
C5 0.3281 (8) 0.8689 (4) 0.2147 (3) 0.1185 (14)
H5A 0.2688 0.865 0.1513 0.142*
H5B 0.4368 0.8096 0.2185 0.142*
C6 0.4450 (8) 1.0093 (4) 0.2390 (3) 0.1321 (17)
H6A 0.3366 1.0677 0.2395 0.198*
H6B 0.5531 1.0364 0.1935 0.198*
H6C 0.5184 1.0117 0.2991 0.198*
C11 −0.0360 (4) 0.4255 (2) 0.13332 (14) 0.0505 (5)
C12 0.1801 (4) 0.4642 (2) 0.10651 (16) 0.0556 (5)
H12 0.2467 0.5511 0.1166 0.067*
C13 0.2992 (4) 0.3762 (2) 0.06492 (16) 0.0590 (6)
H13 0.4436 0.4041 0.0465 0.071*
C14 0.2027 (4) 0.2473 (2) 0.05101 (16) 0.0585 (6)
C15 −0.0100 (4) 0.2056 (2) 0.07759 (19) 0.0691 (7)
H15 −0.0742 0.1181 0.0685 0.083*
C16 −0.1281 (4) 0.2940 (2) 0.11776 (19) 0.0666 (6)
H16 −0.2732 0.2653 0.135 0.08*
C21 −0.0324 (4) 0.4175 (2) 0.36755 (14) 0.0491 (5)
C22 −0.1257 (4) 0.2865 (2) 0.37598 (18) 0.0622 (6)
H22 −0.2735 0.2589 0.3566 0.075*
C23 −0.0036 (4) 0.1967 (2) 0.41250 (19) 0.0660 (6)
H23 −0.0682 0.1094 0.4173 0.079*
C24 0.2138 (4) 0.2375 (2) 0.44168 (16) 0.0583 (6)
C25 0.3124 (4) 0.3650 (2) 0.43325 (16) 0.0565 (5)
H25 0.4605 0.3913 0.4526 0.068*
C26 0.1900 (4) 0.4544 (2) 0.39570 (15) 0.0536 (5)
H26 0.2579 0.5408 0.3892 0.064*
N1 −0.1697 (3) 0.51418 (19) 0.16948 (13) 0.0578 (5)
N2 −0.1687 (3) 0.50789 (19) 0.33683 (13) 0.0561 (5)
N3 0.0600 (4) 0.68403 (18) 0.26379 (14) 0.0615 (5)
Cl1 0.34990 (13) 0.13680 (7) −0.00400 (5) 0.0841 (3)
Cl2 0.36408 (14) 0.12627 (7) 0.49405 (6) 0.0865 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0497 (13) 0.0749 (16) 0.0606 (14) 0.0138 (11) 0.0016 (10) 0.0033 (11)
C2 0.0733 (16) 0.0592 (14) 0.0614 (14) 0.0235 (12) 0.0035 (12) −0.0017 (11)
C3 0.0750 (16) 0.0586 (14) 0.0659 (15) 0.0211 (12) 0.0029 (12) 0.0117 (11)
C4 0.108 (2) 0.0557 (15) 0.090 (2) 0.0095 (15) 0.0082 (18) 0.0044 (14)
C5 0.146 (4) 0.088 (2) 0.115 (3) −0.010 (2) 0.040 (3) −0.009 (2)
C6 0.173 (4) 0.088 (3) 0.115 (3) −0.044 (3) 0.017 (3) 0.006 (2)
C11 0.0516 (12) 0.0559 (12) 0.0421 (10) 0.0039 (10) −0.0054 (9) 0.0039 (9)
C12 0.0574 (13) 0.0499 (12) 0.0562 (12) −0.0013 (10) −0.0019 (10) 0.0039 (10)
C13 0.0545 (13) 0.0635 (14) 0.0572 (13) 0.0030 (11) 0.0037 (10) 0.0052 (11)
C14 0.0639 (14) 0.0586 (13) 0.0519 (12) 0.0084 (11) −0.0040 (10) −0.0039 (10)
C15 0.0691 (16) 0.0530 (14) 0.0799 (17) −0.0045 (12) −0.0021 (13) −0.0076 (12)
C16 0.0536 (13) 0.0641 (15) 0.0778 (16) −0.0036 (11) 0.0046 (12) −0.0022 (12)
C21 0.0510 (12) 0.0533 (12) 0.0431 (11) 0.0077 (9) 0.0077 (9) −0.0002 (9)
C22 0.0524 (13) 0.0587 (14) 0.0725 (15) −0.0012 (11) 0.0051 (11) 0.0020 (11)
C23 0.0690 (16) 0.0492 (13) 0.0782 (16) 0.0015 (11) 0.0125 (13) 0.0071 (11)
C24 0.0664 (15) 0.0554 (13) 0.0564 (13) 0.0164 (11) 0.0126 (11) 0.0087 (10)
C25 0.0528 (12) 0.0610 (13) 0.0561 (13) 0.0102 (10) 0.0020 (10) 0.0024 (10)
C26 0.0562 (13) 0.0486 (12) 0.0541 (12) 0.0018 (10) 0.0059 (10) 0.0023 (9)
N1 0.0583 (11) 0.0619 (11) 0.0538 (11) 0.0113 (9) −0.0016 (8) 0.0046 (9)
N2 0.0567 (11) 0.0603 (11) 0.0525 (10) 0.0130 (9) 0.0024 (8) 0.0000 (8)
N3 0.0734 (13) 0.0446 (10) 0.0665 (12) 0.0104 (9) −0.0022 (10) 0.0023 (9)
Cl1 0.0883 (5) 0.0780 (5) 0.0872 (5) 0.0207 (4) 0.0049 (4) −0.0199 (4)
Cl2 0.0940 (5) 0.0765 (5) 0.0981 (6) 0.0357 (4) 0.0131 (4) 0.0278 (4)

Geometric parameters (Å, º)

C1—N1 1.458 (3) C11—C16 1.393 (3)
C1—N2 1.461 (3) C11—N1 1.417 (3)
C1—H1A 0.97 C12—C13 1.384 (3)
C1—H1B 0.97 C12—H12 0.93
C2—N2 1.439 (3) C13—C14 1.372 (3)
C2—N3 1.458 (3) C13—H13 0.93
C2—H2A 0.97 C14—C15 1.368 (4)
C2—H2B 0.97 C14—Cl1 1.747 (2)
C3—N1 1.450 (3) C15—C16 1.374 (4)
C3—N3 1.465 (3) C15—H15 0.93
C3—H3A 0.97 C16—H16 0.93
C3—H3B 0.97 C21—C26 1.389 (3)
C4—C5 1.448 (5) C21—C22 1.392 (3)
C4—N3 1.475 (3) C21—N2 1.412 (3)
C4—H4A 0.97 C22—C23 1.380 (4)
C4—H4B 0.97 C22—H22 0.93
C5—C6 1.536 (4) C23—C24 1.371 (4)
C5—H5A 0.97 C23—H23 0.93
C5—H5B 0.97 C24—C25 1.367 (3)
C6—H6A 0.96 C24—Cl2 1.747 (2)
C6—H6B 0.96 C25—C26 1.384 (3)
C6—H6C 0.96 C25—H25 0.93
C11—C12 1.383 (3) C26—H26 0.93
N1—C1—N2 111.86 (19) C13—C12—H12 119.3
N1—C1—H1A 109.2 C14—C13—C12 119.6 (2)
N2—C1—H1A 109.2 C14—C13—H13 120.2
N1—C1—H1B 109.2 C12—C13—H13 120.2
N2—C1—H1B 109.2 C15—C14—C13 120.5 (2)
H1A—C1—H1B 107.9 C15—C14—Cl1 119.76 (19)
N2—C2—N3 111.81 (18) C13—C14—Cl1 119.70 (19)
N2—C2—H2A 109.3 C14—C15—C16 119.6 (2)
N3—C2—H2A 109.3 C14—C15—H15 120.2
N2—C2—H2B 109.3 C16—C15—H15 120.2
N3—C2—H2B 109.3 C15—C16—C11 121.7 (2)
H2A—C2—H2B 107.9 C15—C16—H16 119.1
N1—C3—N3 112.04 (19) C11—C16—H16 119.1
N1—C3—H3A 109.2 C26—C21—C22 117.6 (2)
N3—C3—H3A 109.2 C26—C21—N2 123.0 (2)
N1—C3—H3B 109.2 C22—C21—N2 119.3 (2)
N3—C3—H3B 109.2 C23—C22—C21 121.4 (2)
H3A—C3—H3B 107.9 C23—C22—H22 119.3
C5—C4—N3 113.4 (3) C21—C22—H22 119.3
C5—C4—H4A 108.9 C24—C23—C22 119.4 (2)
N3—C4—H4A 108.9 C24—C23—H23 120.3
C5—C4—H4B 108.9 C22—C23—H23 120.3
N3—C4—H4B 108.9 C25—C24—C23 120.9 (2)
H4A—C4—H4B 107.7 C25—C24—Cl2 119.54 (19)
C4—C5—C6 112.8 (3) C23—C24—Cl2 119.48 (19)
C4—C5—H5A 109 C24—C25—C26 119.5 (2)
C6—C5—H5A 109 C24—C25—H25 120.2
C4—C5—H5B 109 C26—C25—H25 120.2
C6—C5—H5B 109 C25—C26—C21 121.2 (2)
H5A—C5—H5B 107.8 C25—C26—H26 119.4
C5—C6—H6A 109.5 C21—C26—H26 119.4
C5—C6—H6B 109.5 C11—N1—C3 118.73 (19)
H6A—C6—H6B 109.5 C11—N1—C1 118.44 (19)
C5—C6—H6C 109.5 C3—N1—C1 109.38 (19)
H6A—C6—H6C 109.5 C21—N2—C2 118.41 (19)
H6B—C6—H6C 109.5 C21—N2—C1 118.07 (18)
C12—C11—C16 117.3 (2) C2—N2—C1 109.76 (19)
C12—C11—N1 123.2 (2) C2—N3—C3 108.2 (2)
C16—C11—N1 119.4 (2) C2—N3—C4 108.2 (2)
C11—C12—C13 121.3 (2) C3—N3—C4 112.7 (2)
C11—C12—H12 119.3
N3—C4—C5—C6 −170.1 (3) C16—C11—N1—C3 −175.1 (2)
C16—C11—C12—C13 0.7 (3) C12—C11—N1—C1 −136.1 (2)
N1—C11—C12—C13 −175.0 (2) C16—C11—N1—C1 48.3 (3)
C11—C12—C13—C14 −0.9 (3) N3—C3—N1—C11 −83.0 (3)
C12—C13—C14—C15 0.2 (4) N3—C3—N1—C1 57.2 (3)
C12—C13—C14—Cl1 178.45 (18) N2—C1—N1—C11 84.7 (2)
C13—C14—C15—C16 0.6 (4) N2—C1—N1—C3 −55.7 (3)
Cl1—C14—C15—C16 −177.6 (2) C26—C21—N2—C2 −5.2 (3)
C14—C15—C16—C11 −0.8 (4) C22—C21—N2—C2 170.6 (2)
C12—C11—C16—C15 0.1 (4) C26—C21—N2—C1 131.2 (2)
N1—C11—C16—C15 176.0 (2) C22—C21—N2—C1 −53.0 (3)
C26—C21—C22—C23 1.2 (3) N3—C2—N2—C21 81.6 (2)
N2—C21—C22—C23 −174.9 (2) N3—C2—N2—C1 −58.1 (3)
C21—C22—C23—C24 0.4 (4) N1—C1—N2—C21 −83.5 (3)
C22—C23—C24—C25 −1.4 (4) N1—C1—N2—C2 56.4 (3)
C22—C23—C24—Cl2 176.34 (19) N2—C2—N3—C3 58.6 (2)
C23—C24—C25—C26 0.7 (4) N2—C2—N3—C4 −179.0 (2)
Cl2—C24—C25—C26 −177.02 (17) N1—C3—N3—C2 −58.3 (3)
C24—C25—C26—C21 0.9 (3) N1—C3—N3—C4 −177.8 (2)
C22—C21—C26—C25 −1.8 (3) C5—C4—N3—C2 166.4 (3)
N2—C21—C26—C25 174.05 (19) C5—C4—N3—C3 −74.0 (4)
C12—C11—N1—C3 0.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2A···Cgi 0.96 2.92 3.668 (3) 134

Symmetry code: (i) −x, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5723).

References

  1. Baker, V. J., Ferguson, I. J., Katritzky, A. R., Patel, R. C. & Rahimi-Rastgoo, S. (1978). J. Chem. Soc. Perkin Trans. 2, pp. 377–381.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Bouchemma, A., McCabe, P. H. & Sim, G. A. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 583–587.
  4. Bouchemma, A., McCabe, P. H. & Sim, G. A. (1990). Acta Cryst. C46, 410–414.
  5. Brandenburg, K. & Berndt, M. (2001). DIAMOND Crystal Impact, Bonn, Germany.
  6. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  7. Bushweller, C. H. (1995). In Conformational BehaVior of Six-Membered Rings. Analysis, Dynamics, and Stereoelectronic Effects, edited by E. Juaristi. New York: VCH Publishers.
  8. Duke, R. P., Jones, R. A. Y., Katritzky, A. R., Scattergood, R. & Riddell, F. G. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 2109–2111.
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Freeman, F., Asgari, N., Entezam, B., Gomarooni, F., Mac, J., Nguyen, M. H., Nguyen, N. N. T., Nguyen, T. P., Pham, N. B., Sultana, P., Welch, T. S. & Shainyan, B. A. (2005). J. Quantum Chem. 101, 40–54.
  11. Gilardi, R., Evans, R. N. & Duddu, R. (2003). Acta Cryst. E59, o1187–o1188.
  12. Giumanini, A. G., Verardo, G., Randaccio, L., Bresciani-Pahor, N. & Traldi, P. (1985). J. Prakt. Chem. 327, 739–748.
  13. Kleinpeter, E., Koch, A. & Pihlaja, K. (2005). Tetrahedron, 61, 7349–7358.
  14. Latreche, S., Bouchemma, A., Bouacida, S., Bouhenguel, M. & Mousser, A. (2006). Acta Cryst. E62, o4674–o4675.
  15. Mloston, G., Jasinski, M., Linden, A. & Heimgartner, H. (2006). Helv. Chim. Acta, 89, 1304–1316.
  16. Nonius (1997). COLLECT Nonius BV, Delft, The netherlands.
  17. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Wiberg, K. B., Hammer, J. D., Castejon, H., Bailey, W. F., DeLeon, E. L. & Jarret, R. M. (1999). J. Org. Chem. 64, 2085. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814019060/lh5723sup1.cif

e-70-o1061-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814019060/lh5723Isup2.hkl

e-70-o1061-Isup2.hkl (165.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814019060/lh5723Isup3.cml

. DOI: 10.1107/S1600536814019060/lh5723fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

. DOI: 10.1107/S1600536814019060/lh5723fig2.tif

Part of the crystal structure of the title compound showing the ’head to tail’ arrangement of mol­ecules arranged in columns.

CCDC reference: 1020727

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES