Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 1;70(Pt 9):o960–o961. doi: 10.1107/S160053681401719X

Crystal structure of 4-bromo-N-(2-bromo-3-nitro­benz­yl)-2-nitro­naphthalen-1-amine

Vijay P Singh a, Krishnan Venkateshwaran a, Harkesh B Singh a, Ray J Butcher b,*
PMCID: PMC4186169  PMID: 25309280

Abstract

In the title compound, C17H11Br2N3O4, the dihedral angle between the planes of the naphthalene system and the benzene ring is 52.86 (8)°. The nitro substituent and the attached naphthalene system are almost coplanar [dihedral angle = 5.6 (4)°], probably as a consequence of an intra­molecular N—H⋯O hydrogen bond with the amine group. The nitro substituent attached to the benzene ring is disordered over two sets of sites with occupancies of 0.694 (3) and 0.306 (3). The major component deviates significantly from the ring plane [dihedral angle = 53.6 (2)°]. In the crystal, the mol­ecules are linked into a three-dimensional array by extensive π–π inter­actions involving both the naphthalene and benzene rings [range of centroid–centroid distances = 3.5295 (16)–3.9629 (18) Å] and C—H⋯O inter­actions involving the methyl­ene H atoms and the phenyl-attached nitro group.

Keywords: crystal structure, naphthalen-1-amine, π–π inter­actions, hydrogen bonding, aryl­selenium compounds, photoluminescent seleno­spiro­cyclic compounds

Related literature  

For the role of secondary inter­actions in stabilizing organoselenium compounds, see; Singh et al. (2010, 2012); Mugesh & Singh (2000). For the isolation of novel photoluminescent seleno­spiro­cyclic compounds via inter­molecular C—C bond formation, see: Singh et al. (2011).graphic file with name e-70-0o960-scheme1.jpg

Experimental  

Crystal data  

  • C17H11Br2N3O4

  • M r = 481.11

  • Triclinic, Inline graphic

  • a = 8.3675 (4) Å

  • b = 8.5812 (5) Å

  • c = 12.2691 (5) Å

  • α = 76.973 (4)°

  • β = 81.053 (4)°

  • γ = 76.302 (5)°

  • V = 829.00 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.92 mm−1

  • T = 123 K

  • 0.44 × 0.32 × 0.12 mm

Data collection  

  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.345, T max = 1.000

  • 12164 measured reflections

  • 6700 independent reflections

  • 4118 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.129

  • S = 1.02

  • 6700 reflections

  • 246 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.77 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681401719X/tk5325sup1.cif

e-70-0o960-sup1.cif (371.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401719X/tk5325Isup2.hkl

e-70-0o960-Isup2.hkl (367.1KB, hkl)

Supporting information file. DOI: 10.1107/S160053681401719X/tk5325Isup3.cml

. DOI: 10.1107/S160053681401719X/tk5325fig1.tif

The reaction scheme.

17 11 2 3 4 . DOI: 10.1107/S160053681401719X/tk5325fig2.tif

The mol­ecular structure of C17H11Br2N3O4 showing the numbering scheme and 30% probability displacement ellipsoids and the intra­molecular N—H⋯O hydrogen bond (shown as a dashed bond).

17 11 2 3 4 c . DOI: 10.1107/S160053681401719X/tk5325fig3.tif

The mol­ecular packing for C17H11Br2N3O4 viewed along the c axis showing the linking of the mol­ecules into a three-dimensional array by π–π inter­actions as well as a network of C—H⋯O inter­actions (shown as dashed bonds).

CCDC reference: 1015963

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.84 (3) 1.91 (3) 2.624 (3) 141 (3)
C12—H12B⋯O4A i 0.99 2.54 3.532 (4) 177
C12—H12B⋯O4B i 0.99 2.61 3.462 (8) 144

Symmetry code: (i) Inline graphic.

Acknowledgments

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

S1. Comment

Aryl­selenium compounds having one ortho-coordinating group have been widely studied as reagents in organic synthesis, gluta­thione peroxidase mimics, and precursors for the synthesis of macrocycles (Singh et al., 2012; Mugesh & Singh, 2000). Introduction of a second ortho-coordinating group towards selenium leads to inter­esting reactivity of the selenium derivatives and isolation of unusual species (Singh et al., 2010). Recently, we reported the isolation of novel photoluminescent seleno­spiro­cyclic compounds via inter­molecular C—C bond formation (Singh et al., 2011). In continuation of this research, we attempted the synthesis of naphthyl­amine based spiro­cyclic compounds. However, the reaction led to the isolation of 4-bromo-N-(2-bromo-3-nitro­benzyl)-2-nitro­naphthalen-1-amine (2) instead of the desired spiro-compound (3) (Fig. 1).

In the structure of the title compound, Fig. 2, the naphthyl nitro substituent is almost coplanar with the naphthyl ring (dihedral angle = 5.6 (4)°) probably as a consequence of an intra­molecular hydrogen bond with the N—H moiety. However, the nitro substituent attached to the benzene deviates significantly from the ring plane (dihedral angle = 53.6 (2)° for the major component); this is disordered with occupancies of 0.694 (3) and 0.306 (3). The dihedral angle between the two ring systems is 52.86 (8)°. The molecules are linked into a three-dimensional array, Fig. 3, by extensive π–π inter­actions involving both the naphthyl ring (Cg1; C1, C2, C3, C4, C5, C10: Cg2; C5, C6, C7, C8, C9, C10) and benzene ring (Cg3; C13, C14, C15, C16, C17, C18), see Table 1, and, in addition, there are weak inter­molecular C—H···O inter­actions involving the methyl­ene H atoms and the benzene­nitro group, Table 2.

S2. Experimental

Referring to Fig. 1, to a stirred solution of selenide 1 (0.400 g 1 mmol in 3 mL CHCl3) at 0° C, was added bromine (0.05 ml in 1 mL CHCl3). After 30 mins a yellow precipitate was formed. Stirring was continued for further 30 mins, Et3N (0.140 ml) added and the stirring continued for an additional 6 h. After completion of the reaction, the reaction mixture was poured into water and extracted with CHCl3 (2 × 30 mL). The combined organic layers were dried over sodium sulfate and evaporated on a rotary evaporator to get a brown solid. Yield: 0.230 g (49 %); 1H NMR (CDCl3): δ [ppm] = 7.57-7.83 (m, 6H), 8.12 (s, CH, 1H), 8.29-8.32 (d, J = 8.43 Hz, 1H), 8.55-8.58 (dd, J = 0.73, 7.33 Hz, 1H), 8.66-8.69 (dd, J = 0.73, 8.06 Hz, 1H). 13C NMR (CDCl3): δ [ppm] = 122.7, 123.8, 125.3, 128.1, 128.2, 128.3, 128.5, 129.2, 130.0, 132.2, 132.4, 133.2, 133.4, 135.8, 138.2, 142.5, 164.9. IR (KBr): 3455, 2924, 1666, 1510, 1374, 1296, 768, 734 cm-1.

S2.1. Refinement

C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95–0.99 Å, and with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H atom was refined freely. One of the nitro groups was disordered over two conformations with occupancies of 0.694 (3) and 0.306 (4). The two conformers were constrained to have similar metrical parameters. Highest residual electron density peak; 1.02 e/Å3 is 0.74 A from Br2, and the deepest hole of -0.81 e/Å3 is 0.65 A from Br1. Twelve reflections were removed from the final refinement owing to poor agreement.

Figures

Fig. 1.

Fig. 1.

The reaction scheme.

Fig. 2.

Fig. 2.

The molecular structure of C17H11Br2N3O4 showing the numbering scheme and 30% probability displacement ellipsoids and the intramolecular N—H···O hydrogen bond (shown as a dashed bond).

Fig. 3.

Fig. 3.

The molecular packing for C17H11Br2N3O4 viewed along the c axis showing the linking of the molecules into a three-dimensional array by π–π interactions as well as a network of C—H···O interactions (shown as dashed bonds).

Crystal data

C17H11Br2N3O4 Z = 2
Mr = 481.11 F(000) = 472
Triclinic, P1 Dx = 1.927 Mg m3
a = 8.3675 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.5812 (5) Å Cell parameters from 3926 reflections
c = 12.2691 (5) Å θ = 5.0–34.9°
α = 76.973 (4)° µ = 4.92 mm1
β = 81.053 (4)° T = 123 K
γ = 76.302 (5)° Plate, orange
V = 829.00 (8) Å3 0.44 × 0.32 × 0.12 mm

Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer 4118 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1 Rint = 0.033
ω scans θmax = 35.0°, θmin = 5.0°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) h = −13→13
Tmin = 0.345, Tmax = 1.000 k = −12→13
12164 measured reflections l = −19→19
6700 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: mixed
wR(F2) = 0.129 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.3384P] where P = (Fo2 + 2Fc2)/3
6700 reflections (Δ/σ)max = 0.001
246 parameters Δρmax = 1.04 e Å3
1 restraint Δρmin = −0.77 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.52119 (4) 0.68126 (4) 0.76444 (2) 0.03410 (10)
Br2 0.98711 (4) 0.82225 (4) 0.23405 (3) 0.03346 (10)
O1 0.9351 (3) 0.3484 (3) 0.5032 (2) 0.0374 (6)
O2 0.8810 (3) 0.4048 (3) 0.3315 (2) 0.0346 (5)
O3A 1.3573 (4) 0.6322 (4) 0.0114 (3) 0.0334 (7) 0.694 (3)
O4A 1.2701 (4) 0.8769 (5) 0.0461 (4) 0.0480 (10) 0.694 (3)
O3B 1.3147 (8) 0.8513 (9) −0.0408 (7) 0.0334 (7) 0.306 (3)
O4B 1.3038 (10) 0.6768 (10) 0.1138 (8) 0.0480 (10) 0.306 (3)
N1 0.6518 (3) 0.6613 (3) 0.2639 (2) 0.0230 (5)
H1N 0.724 (4) 0.577 (4) 0.254 (3) 0.027 (9)*
N2 0.8518 (3) 0.4286 (3) 0.4272 (2) 0.0240 (5)
N3 1.2471 (3) 0.7536 (3) 0.0266 (2) 0.0276 (6)
C1 0.6183 (3) 0.6659 (3) 0.3756 (2) 0.0171 (5)
C2 0.7114 (3) 0.5555 (3) 0.4567 (2) 0.0196 (5)
C3 0.6804 (3) 0.5624 (3) 0.5728 (2) 0.0211 (5)
H3A 0.7467 0.4854 0.6252 0.025*
C4 0.5575 (3) 0.6778 (4) 0.6087 (2) 0.0216 (5)
C5 0.4516 (3) 0.7931 (3) 0.5332 (2) 0.0183 (5)
C6 0.3170 (3) 0.9116 (4) 0.5696 (3) 0.0264 (6)
H6A 0.2998 0.9217 0.6463 0.032*
C7 0.2119 (3) 1.0113 (4) 0.4962 (3) 0.0292 (7)
H7A 0.1240 1.0917 0.5220 0.035*
C8 0.2318 (3) 0.9967 (4) 0.3842 (3) 0.0267 (6)
H8A 0.1552 1.0642 0.3346 0.032*
C9 0.3622 (3) 0.8845 (3) 0.3448 (2) 0.0216 (5)
H9A 0.3741 0.8749 0.2682 0.026*
C10 0.4788 (3) 0.7832 (3) 0.4170 (2) 0.0171 (5)
C12 0.6425 (3) 0.8012 (4) 0.1692 (2) 0.0224 (6)
H12A 0.6430 0.9014 0.1961 0.027*
H12B 0.5383 0.8185 0.1351 0.027*
C13 0.7896 (3) 0.7678 (3) 0.0821 (2) 0.0196 (5)
C14 0.9489 (3) 0.7762 (3) 0.0981 (2) 0.0197 (5)
C15 1.0768 (3) 0.7462 (4) 0.0142 (2) 0.0220 (6)
C16 1.0535 (3) 0.7066 (4) −0.0846 (2) 0.0265 (6)
H16A 1.1437 0.6861 −0.1406 0.032*
C17 0.8958 (4) 0.6977 (4) −0.1002 (2) 0.0286 (6)
H17A 0.8765 0.6709 −0.1674 0.034*
C18 0.7659 (3) 0.7280 (4) −0.0171 (2) 0.0251 (6)
H18A 0.6581 0.7213 −0.0284 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03423 (17) 0.0569 (2) 0.01698 (15) −0.01906 (15) 0.00074 (12) −0.01145 (14)
Br2 0.03155 (17) 0.0494 (2) 0.02682 (17) −0.01218 (14) −0.00825 (13) −0.01525 (14)
O1 0.0319 (11) 0.0295 (13) 0.0449 (15) 0.0057 (9) −0.0109 (11) −0.0035 (11)
O2 0.0336 (12) 0.0256 (12) 0.0354 (13) 0.0041 (9) 0.0090 (10) −0.0068 (10)
O3A 0.0187 (13) 0.0379 (18) 0.0399 (18) −0.0008 (12) −0.0021 (12) −0.0062 (14)
O4A 0.0293 (16) 0.042 (2) 0.077 (3) −0.0142 (15) −0.0194 (17) −0.0033 (19)
O3B 0.0187 (13) 0.0379 (18) 0.0399 (18) −0.0008 (12) −0.0021 (12) −0.0062 (14)
O4B 0.0293 (16) 0.042 (2) 0.077 (3) −0.0142 (15) −0.0194 (17) −0.0033 (19)
N1 0.0283 (12) 0.0210 (13) 0.0178 (11) −0.0034 (10) 0.0014 (9) −0.0045 (9)
N2 0.0187 (10) 0.0158 (12) 0.0353 (14) −0.0023 (9) −0.0050 (10) −0.0002 (10)
N3 0.0184 (11) 0.0345 (16) 0.0282 (13) −0.0085 (11) −0.0050 (10) 0.0023 (11)
C1 0.0144 (10) 0.0196 (13) 0.0179 (12) −0.0063 (9) 0.0009 (9) −0.0039 (10)
C2 0.0168 (11) 0.0173 (13) 0.0237 (13) −0.0033 (10) −0.0009 (10) −0.0032 (10)
C3 0.0202 (12) 0.0237 (14) 0.0189 (13) −0.0079 (10) −0.0044 (10) 0.0020 (10)
C4 0.0213 (12) 0.0310 (15) 0.0162 (12) −0.0127 (11) −0.0005 (10) −0.0056 (11)
C5 0.0145 (10) 0.0204 (13) 0.0220 (13) −0.0078 (9) 0.0028 (9) −0.0075 (10)
C6 0.0230 (13) 0.0292 (16) 0.0311 (16) −0.0082 (11) 0.0046 (12) −0.0163 (12)
C7 0.0185 (12) 0.0239 (16) 0.046 (2) −0.0037 (11) 0.0035 (12) −0.0147 (14)
C8 0.0173 (12) 0.0191 (14) 0.0401 (18) −0.0009 (10) −0.0033 (12) −0.0016 (12)
C9 0.0164 (11) 0.0251 (15) 0.0229 (13) −0.0046 (10) −0.0052 (10) −0.0018 (11)
C10 0.0148 (10) 0.0152 (12) 0.0206 (13) −0.0032 (9) −0.0023 (9) −0.0021 (9)
C12 0.0187 (11) 0.0292 (15) 0.0179 (13) −0.0031 (10) −0.0026 (10) −0.0033 (11)
C13 0.0185 (11) 0.0246 (14) 0.0149 (12) −0.0050 (10) −0.0023 (9) −0.0010 (10)
C14 0.0221 (12) 0.0208 (14) 0.0167 (12) −0.0060 (10) −0.0062 (10) −0.0002 (10)
C15 0.0141 (11) 0.0264 (15) 0.0244 (14) −0.0056 (10) −0.0039 (10) −0.0003 (11)
C16 0.0183 (12) 0.0381 (18) 0.0205 (14) −0.0055 (12) 0.0021 (10) −0.0036 (12)
C17 0.0287 (14) 0.0424 (19) 0.0159 (13) −0.0087 (13) −0.0025 (11) −0.0066 (12)
C18 0.0205 (12) 0.0385 (18) 0.0185 (14) −0.0105 (12) −0.0042 (10) −0.0039 (12)

Geometric parameters (Å, º)

Br1—C4 1.893 (3) C6—C7 1.364 (5)
Br2—C14 1.887 (3) C6—H6A 0.9500
O1—N2 1.231 (3) C7—C8 1.388 (5)
O2—N2 1.214 (3) C7—H7A 0.9500
O3A—N3 1.245 (4) C8—C9 1.378 (4)
O4A—N3 1.199 (4) C8—H8A 0.9500
O3B—N3 1.214 (7) C9—C10 1.419 (4)
O4B—N3 1.224 (9) C9—H9A 0.9500
N1—C1 1.363 (3) C12—C13 1.517 (4)
N1—C12 1.467 (4) C12—H12A 0.9900
N1—H1N 0.85 (3) C12—H12B 0.9900
N2—C2 1.461 (3) C13—C18 1.390 (4)
N3—C15 1.474 (3) C13—C14 1.398 (4)
C1—C2 1.400 (4) C14—C15 1.386 (4)
C1—C10 1.457 (4) C15—C16 1.383 (4)
C2—C3 1.420 (4) C16—C17 1.385 (4)
C3—C4 1.344 (4) C16—H16A 0.9500
C3—H3A 0.9500 C17—C18 1.388 (4)
C4—C5 1.432 (4) C17—H17A 0.9500
C5—C6 1.417 (4) C18—H18A 0.9500
C5—C10 1.426 (4)
C1—N1—C12 127.2 (2) C9—C8—C7 120.2 (3)
C1—N1—H1N 111 (2) C9—C8—H8A 119.9
C12—N1—H1N 116 (2) C7—C8—H8A 119.9
O2—N2—O1 122.8 (3) C8—C9—C10 121.0 (3)
O2—N2—C2 120.1 (2) C8—C9—H9A 119.5
O1—N2—C2 117.1 (3) C10—C9—H9A 119.5
O3B—N3—O4B 122.8 (5) C9—C10—C5 118.2 (2)
O4A—N3—O3A 125.1 (3) C9—C10—C1 121.3 (2)
O4A—N3—C15 118.2 (3) C5—C10—C1 120.5 (2)
O3B—N3—C15 119.2 (4) N1—C12—C13 109.3 (2)
O4B—N3—C15 117.1 (4) N1—C12—H12A 109.8
O3A—N3—C15 116.7 (3) C13—C12—H12A 109.8
N1—C1—C2 122.2 (2) N1—C12—H12B 109.8
N1—C1—C10 121.2 (2) C13—C12—H12B 109.8
C2—C1—C10 116.6 (2) H12A—C12—H12B 108.3
C1—C2—C3 122.5 (2) C18—C13—C14 118.7 (2)
C1—C2—N2 122.3 (3) C18—C13—C12 119.2 (2)
C3—C2—N2 115.1 (3) C14—C13—C12 122.1 (3)
C4—C3—C2 120.1 (3) C15—C14—C13 118.8 (3)
C4—C3—H3A 120.0 C15—C14—Br2 121.3 (2)
C2—C3—H3A 120.0 C13—C14—Br2 119.9 (2)
C3—C4—C5 121.8 (3) C16—C15—C14 122.6 (2)
C3—C4—Br1 118.3 (2) C16—C15—N3 116.3 (2)
C5—C4—Br1 119.9 (2) C14—C15—N3 121.1 (3)
C6—C5—C10 118.8 (3) C15—C16—C17 118.5 (3)
C6—C5—C4 122.8 (3) C15—C16—H16A 120.7
C10—C5—C4 118.4 (2) C17—C16—H16A 120.7
C7—C6—C5 121.0 (3) C16—C17—C18 119.7 (3)
C7—C6—H6A 119.5 C16—C17—H17A 120.2
C5—C6—H6A 119.5 C18—C17—H17A 120.2
C6—C7—C8 120.8 (3) C17—C18—C13 121.7 (3)
C6—C7—H7A 119.6 C17—C18—H18A 119.2
C8—C7—H7A 119.6 C13—C18—H18A 119.2
C12—N1—C1—C2 −141.9 (3) N1—C1—C10—C9 7.0 (4)
C12—N1—C1—C10 40.5 (4) C2—C1—C10—C9 −170.8 (2)
N1—C1—C2—C3 178.1 (2) N1—C1—C10—C5 −176.1 (2)
C10—C1—C2—C3 −4.1 (4) C2—C1—C10—C5 6.2 (3)
N1—C1—C2—N2 0.6 (4) C1—N1—C12—C13 138.6 (3)
C10—C1—C2—N2 178.3 (2) N1—C12—C13—C18 105.6 (3)
O2—N2—C2—C1 −7.7 (4) N1—C12—C13—C14 −74.5 (3)
O1—N2—C2—C1 173.1 (2) C18—C13—C14—C15 0.6 (4)
O2—N2—C2—C3 174.6 (2) C12—C13—C14—C15 −179.2 (3)
O1—N2—C2—C3 −4.6 (3) C18—C13—C14—Br2 −177.7 (2)
C1—C2—C3—C4 0.2 (4) C12—C13—C14—Br2 2.4 (4)
N2—C2—C3—C4 177.9 (2) C13—C14—C15—C16 −0.6 (4)
C2—C3—C4—C5 1.9 (4) Br2—C14—C15—C16 177.7 (2)
C2—C3—C4—Br1 179.86 (19) C13—C14—C15—N3 179.9 (3)
C3—C4—C5—C6 177.4 (3) Br2—C14—C15—N3 −1.7 (4)
Br1—C4—C5—C6 −0.6 (3) O4A—N3—C15—C16 125.2 (4)
C3—C4—C5—C10 0.2 (4) O3B—N3—C15—C16 60.9 (6)
Br1—C4—C5—C10 −177.74 (18) O4B—N3—C15—C16 −129.3 (6)
C10—C5—C6—C7 2.0 (4) O3A—N3—C15—C16 −52.1 (4)
C4—C5—C6—C7 −175.2 (3) O4A—N3—C15—C14 −55.3 (4)
C5—C6—C7—C8 1.5 (4) O3B—N3—C15—C14 −119.6 (6)
C6—C7—C8—C9 −2.3 (4) O4B—N3—C15—C14 50.2 (6)
C7—C8—C9—C10 −0.5 (4) O3A—N3—C15—C14 127.4 (3)
C8—C9—C10—C5 3.9 (4) C14—C15—C16—C17 0.4 (5)
C8—C9—C10—C1 −179.1 (2) N3—C15—C16—C17 179.8 (3)
C6—C5—C10—C9 −4.6 (4) C15—C16—C17—C18 −0.1 (5)
C4—C5—C10—C9 172.7 (2) C16—C17—C18—C13 0.2 (5)
C6—C5—C10—C1 178.4 (2) C14—C13—C18—C17 −0.4 (4)
C4—C5—C10—C1 −4.3 (4) C12—C13—C18—C17 179.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2 0.84 (3) 1.91 (3) 2.624 (3) 141 (3)
C12—H12A···O3Bi 0.99 2.57 3.117 (8) 115
C12—H12B···O4Aii 0.99 2.54 3.532 (4) 177
C12—H12B···O4Bii 0.99 2.61 3.462 (8) 144

Symmetry codes: (i) −x+2, −y+2, −z; (ii) x−1, y, z.

π–π interactions (Å)

Ring 1 Ring 2 Distance Perpedicular distance Slippage Symmetry
Cg1 Cg1 3.5295 (16) 3.3867 (11) 0.94 1-x,1-y,1-z
Cg2 Cg2 3.8868 (15) 3.3859 (12) 1.91 1-x,-y,1-z
Cg3 Cg3 3.9629 (18) 3.5873 (12) 1.68 -x,1-y,2-z

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5325).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Mugesh, G. & Singh, H. B. (2000). Chem. Soc. Rev. 29, 347–357.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Singh, V. P., Singh, H. B. & Butcher, R. J. (2010). Eur. J. Inorg. Chem. pp. 637–647.
  6. Singh, V. P., Singh, H. B. & Butcher, R. J. (2011). Chem. Commun. 47, 7221–7223. [DOI] [PubMed]
  7. Singh, V. P., Singh, P., Singh, H. B. & Butcher, R. J. (2012). Tetrahedron Lett. 53, 4591–4594.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681401719X/tk5325sup1.cif

e-70-0o960-sup1.cif (371.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401719X/tk5325Isup2.hkl

e-70-0o960-Isup2.hkl (367.1KB, hkl)

Supporting information file. DOI: 10.1107/S160053681401719X/tk5325Isup3.cml

. DOI: 10.1107/S160053681401719X/tk5325fig1.tif

The reaction scheme.

17 11 2 3 4 . DOI: 10.1107/S160053681401719X/tk5325fig2.tif

The mol­ecular structure of C17H11Br2N3O4 showing the numbering scheme and 30% probability displacement ellipsoids and the intra­molecular N—H⋯O hydrogen bond (shown as a dashed bond).

17 11 2 3 4 c . DOI: 10.1107/S160053681401719X/tk5325fig3.tif

The mol­ecular packing for C17H11Br2N3O4 viewed along the c axis showing the linking of the mol­ecules into a three-dimensional array by π–π inter­actions as well as a network of C—H⋯O inter­actions (shown as dashed bonds).

CCDC reference: 1015963

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES