Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 1;70(Pt 9):o944–o945. doi: 10.1107/S1600536814016869

Crystal structure of 4-chloro-2-iodo­aniline

Taylor R Quinn a, Joseph M Tanski a,*
PMCID: PMC4186172  PMID: 25309269

Abstract

In the crystal structure of the title compound, C6H5ClIN, the amino group engages in N—H⋯N hydrogen bonding, creating [100] chains. A Cl⋯I contact is observed [3.7850 (16) Å]. The parallel planes of neigbouring mol­ecules reveal highly offset π-stacking characterized by a centroid–centroid distance of 4.154 (1), a centroid-to-plane distance of 3.553 (3) and ring-offset slippage of 2.151 (6) Å.

Keywords: crystal structure, halogen–halogen inter­action, aniline, π-stacking

Related literature  

For the synthesis and vibrational spectroscopic analysis of 4-chloro-2-iodo­aniline, see: Hoque et al. (2013). For the dehalo­genation of dihalogenated anilines in human liver microsomes, see: Zhang et al. (2011). For the crystal structures of related monohalogenated anilines, see: Trotter et al. (1966); Parkin et al. (2005) and of dihalogenated anilines, see: Xu et al. (2008). For halogen–halogen inter­actions, see: Pedireddi et al. (1994) and for π-stacking, see: Lueckheide et al. (2013). For van der Waals radii, see: Bondi (1964).graphic file with name e-70-0o944-scheme1.jpg

Experimental  

Crystal data  

  • C6H5ClIN

  • M r = 253.46

  • Orthorhombic, Inline graphic

  • a = 4.1538 (4) Å

  • b = 11.3685 (11) Å

  • c = 15.8550 (16) Å

  • V = 748.71 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.54 mm−1

  • T = 125 K

  • 0.20 × 0.10 × 0.05 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.56, T max = 0.81

  • 11850 measured reflections

  • 2281 independent reflections

  • 2007 reflections with I > 2σ(I)

  • R int = 0.066

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.053

  • S = 1.02

  • 2281 reflections

  • 88 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.96 e Å−3

  • Δρmin = −1.03 e Å−3

  • Absolute structure: Flack x determined using 742 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)

  • Absolute structure parameter: −0.03 (3)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014, OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814016869/jj2191sup1.cif

e-70-0o944-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016869/jj2191Isup2.hkl

e-70-0o944-Isup2.hkl (125.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814016869/jj2191Isup3.cml

. DOI: 10.1107/S1600536814016869/jj2191fig1.tif

A view of title compound, with atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

a . DOI: 10.1107/S1600536814016869/jj2191fig2.tif

A view of the hydrogen bonding in 4-Chloro-2-iodo­aniline forming a chain parallel to the crystallographic a-axis. Displacement ellipsoids are shown at the 50% probability level; hydrogen atoms on carbon removed for clarity. For symmetry code (ii), see Table 1.

i x y z . DOI: 10.1107/S1600536814016869/jj2191fig3.tif

A view of the offset face-to-face π-stacking and Cl⋯Ii contact (thick solid line) in the packing of 4-Chloro-2-iodo­aniline. Displacement ellipsoids are shown at the 50% probability level. Symmetry code: (i): x − 1/2, −y + 3/2, −z.

CCDC reference: 1015344

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯N1ii 0.90 (2) 2.28 (3) 3.142 (6) 161 (5)

Symmetry code: (ii) Inline graphic.

Acknowledgments

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

supplementary crystallographic information

S1. Structural commentary

Dihalogenated anilines such as the title compound exhibit different toxicities depending on the identity, number and substitution pattern of the halogens on the aniline ring, and the mechanism of halogen activiation in differently substituted dihalogenated anilines by gluta­thione has been studied using human liver microsomes (Zhang et al., 2011). The title compound may be synthesized using selective ortho-iodination of 4-chloro­aniline (Hoque et al., 2013). The C—Cl and C—I bond lengths of 1.755 (6) Å and 2.101 (5) Å in the title compound (Fig. 1) are similar to those found in the corresponding mono-substituted anilines, 4-chloro­aniline with C—Cl bond length 1.75 Å (Trotter et al., 1966) and 2-iodo­aniline with C—I bond length 2.103 (7) Å (Parkin et al., 2005). Further, the C—Cl and C—I bond lengths are similar to those found in the isomer where the positions of the halides are reversed, 2-chloro-4-iodo­aniline, with C—Cl bond length 1.742 (4) Å and C—I bond length 2.103 (4) Å (Xu et al., 2008).

In the structure of the titular compound, cooperative inter­molecular hydrogen bonding with one of the two amine protons, H2, links the molecules into a one-dimensional chain running down the crystallographic a-axis (Fig. 2, Table 1). The other amine proton, H1, does not engage in any significant hydrogen bonding inter­action. There is also an inter­molecular halogen-halogen inter­action between chlorine and iodine, with a Cl···Ii distance of 3.7850 (16) Å (Fig. 3) which is slightly longer than the sum of the van der Waals radii of chlorine and iodine, 3.73 Å (Bondi, 1964) [symmetry code (i): x - 1/2, -y + 3/2, -z]. For a discussion of halogen···halogen inter­actions, see Pedireddi et al., 1994. The parallel planes of neigboring aromatic molecules reveal a highly offset face-to-face π-stacking (Fig. 3) characterized by a ring centroid-to-centroid distance of 4.154 (1) Å, centroid-to-plane distance of 3.553 (3) Å, and ring-offset slippage parameter of 2.151 (6) Å (Lueckheide et al., 2013).

S2. Synthesis and crystallization

Crystalline 4-Chloro-2-iodo­aniline (I) was purchased from Aldrich Chemical Company, USA.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model at C–H = 0.95 Å and Uiso(H) = 1.2 × Ueq(C) of the aryl C-atoms. The hydrogen atoms on nitro­gen were located in the difference map and refined semifreely with the help of a distance restraint, d(N—H) 0.90 (2) Å and Uiso(H) = 1.2 × Ueq(N). The extinction parameter (EXTI) refined to zero and was removed from the refinement.

Figures

Fig. 1.

Fig. 1.

A view of title compound, with atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the hydrogen bonding in 4-Chloro-2-iodoaniline forming a chain parallel to the crystallographic a-axis. Displacement ellipsoids are shown at the 50% probability level; hydrogen atoms on carbon removed for clarity. For symmetry code (ii), see Table 1.

Fig. 3.

Fig. 3.

A view of the offset face-to-face π-stacking and Cl···Ii contact (thick solid line) in the packing of 4-Chloro-2-iodoaniline. Displacement ellipsoids are shown at the 50% probability level. Symmetry code (i): x - 1/2, -y + 3/2, -z.

Crystal data

C6H5ClIN F(000) = 472
Mr = 253.46 Dx = 2.249 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 5580 reflections
a = 4.1538 (4) Å θ = 2.2–30.3°
b = 11.3685 (11) Å µ = 4.54 mm1
c = 15.8550 (16) Å T = 125 K
V = 748.71 (13) Å3 Plate, colourless
Z = 4 0.20 × 0.10 × 0.05 mm

Data collection

Bruker APEXII CCD diffractometer 2281 independent reflections
Radiation source: fine-focus sealed tube 2007 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.066
Detector resolution: 8.3333 pixels mm-1 θmax = 30.5°, θmin = 2.2°
φ and ω scans h = −5→5
Absorption correction: multi-scan (SADABS; Bruker, 2007) k = −16→16
Tmin = 0.56, Tmax = 0.81 l = −22→22
11850 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0156P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
2281 reflections Δρmax = 0.96 e Å3
88 parameters Δρmin = −1.03 e Å3
2 restraints Absolute structure: Flack x determined using 742 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.03 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 1.19309 (8) 0.92075 (3) −0.09588 (2) 0.02161 (9)
Cl1 1.0100 (4) 0.80636 (12) 0.24943 (10) 0.0322 (3)
N1 0.8012 (13) 1.1528 (4) −0.0258 (3) 0.0236 (9)
H1 0.795 (14) 1.124 (5) −0.0783 (19) 0.028*
H2 0.625 (10) 1.196 (4) −0.017 (4) 0.028*
C1 0.8463 (11) 1.0685 (4) 0.0375 (3) 0.0187 (10)
C2 1.0139 (12) 0.9638 (4) 0.0242 (3) 0.0167 (10)
C3 1.0695 (12) 0.8840 (4) 0.0886 (3) 0.0190 (10)
H3 1.1867 0.8136 0.0784 0.023*
C4 0.9513 (13) 0.9087 (5) 0.1680 (3) 0.0233 (11)
C5 0.7803 (14) 1.0111 (5) 0.1839 (4) 0.0255 (12)
H5 0.6977 1.0266 0.2387 0.031*
C6 0.7316 (12) 1.0906 (4) 0.1191 (3) 0.0228 (11)
H6 0.6182 1.1615 0.1301 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.01729 (14) 0.02359 (15) 0.02395 (16) 0.00030 (14) 0.00153 (14) −0.00153 (15)
Cl1 0.0468 (9) 0.0259 (7) 0.0238 (7) 0.0013 (7) −0.0056 (6) 0.0049 (6)
N1 0.027 (2) 0.0132 (19) 0.031 (3) 0.003 (2) −0.001 (3) 0.0002 (18)
C1 0.014 (2) 0.013 (2) 0.029 (3) −0.002 (2) −0.003 (2) −0.001 (2)
C2 0.015 (3) 0.016 (2) 0.019 (3) −0.0008 (19) −0.001 (2) −0.002 (2)
C3 0.018 (2) 0.014 (2) 0.024 (3) 0.0009 (18) −0.003 (2) −0.003 (2)
C4 0.025 (3) 0.021 (3) 0.024 (3) −0.003 (3) −0.004 (2) 0.002 (2)
C5 0.026 (3) 0.026 (3) 0.025 (3) −0.003 (2) 0.001 (2) −0.004 (2)
C6 0.023 (3) 0.015 (2) 0.030 (3) 0.002 (2) −0.001 (2) −0.007 (2)

Geometric parameters (Å, º)

I1—C2 2.101 (5) C2—C3 1.386 (7)
Cl1—C4 1.755 (6) C3—C4 1.380 (7)
Cl1—I1i 3.7850 (16) C3—H3 0.95
N1—C1 1.400 (7) C4—C5 1.387 (8)
N1—H1 0.90 (2) C5—C6 1.383 (7)
N1—H2 0.90 (2) C5—H5 0.95
C1—C2 1.395 (7) C6—H6 0.95
C1—C6 1.402 (7)
Cl1···I1i 3.7850 (16)
C4—Cl1—I1i 86.03 (18) C4—C3—H3 120.7
C1—N1—H1 115 (4) C2—C3—H3 120.7
C1—N1—H2 112 (4) C3—C4—C5 121.3 (5)
H1—N1—H2 109 (5) C3—C4—Cl1 119.1 (4)
C2—C1—N1 122.9 (5) C5—C4—Cl1 119.6 (4)
C2—C1—C6 117.5 (5) C6—C5—C4 119.2 (5)
N1—C1—C6 119.5 (5) C6—C5—H5 120.4
C3—C2—C1 122.0 (5) C4—C5—H5 120.4
C3—C2—I1 117.2 (4) C5—C6—C1 121.3 (5)
C1—C2—I1 120.8 (4) C5—C6—H6 119.4
C4—C3—C2 118.7 (5) C1—C6—H6 119.4
N1—C1—C2—C3 176.8 (5) I1i—Cl1—C4—C3 −49.3 (4)
C6—C1—C2—C3 −0.5 (7) I1i—Cl1—C4—C5 129.0 (4)
N1—C1—C2—I1 −3.3 (7) C3—C4—C5—C6 −0.9 (8)
C6—C1—C2—I1 179.4 (4) Cl1—C4—C5—C6 −179.2 (4)
C1—C2—C3—C4 0.8 (8) C4—C5—C6—C1 1.2 (8)
I1—C2—C3—C4 −179.1 (4) C2—C1—C6—C5 −0.5 (7)
C2—C3—C4—C5 −0.1 (8) N1—C1—C6—C5 −177.9 (5)
C2—C3—C4—Cl1 178.2 (4)

Symmetry code: (i) x−1/2, −y+3/2, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H2···N1ii 0.90 (2) 2.28 (3) 3.142 (6) 161 (5)

Symmetry code: (ii) x−1/2, −y+5/2, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: JJ2191).

References

  1. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  2. Bruker (2007). SAINT, SADABS and APEX2 Bruxer AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Hoque, M. M., Halim, M. A., Rahman, M. M. & Hossain, M. I. (2013). J. Mol. Struct. 1054–1055, 367–374.
  5. Lueckheide, M., Rothman, N., Ko, B. & Tanski, J. M. (2013). Polyhedron, 58, 79–84.
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Parkin, A., Spanswick, C. K., Pulham, C. R. & Wilson, C. C. (2005). Acta Cryst. E61, o1087–o1089.
  8. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  9. Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Trotter, J., Whitlow, S. H. & Zobel, T. (1966). J. Chem. Soc. A, p. 353.
  12. Xu, Y.-H., Wang, C. & Qu, F. (2008). Acta Cryst. E64, o2300. [DOI] [PMC free article] [PubMed]
  13. Zhang, C., Kenny, J. R., Le, H., Deese, A., Ford, K. A., Lightning, L. K., Fan, P. W., Driscoll, J. P., Halladay, J. S., Hop, C. E. C. A. & Khojasteh, S. C. (2011). Chem. Res. Toxicol. 24, 1668–1677. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814016869/jj2191sup1.cif

e-70-0o944-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814016869/jj2191Isup2.hkl

e-70-0o944-Isup2.hkl (125.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814016869/jj2191Isup3.cml

. DOI: 10.1107/S1600536814016869/jj2191fig1.tif

A view of title compound, with atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

a . DOI: 10.1107/S1600536814016869/jj2191fig2.tif

A view of the hydrogen bonding in 4-Chloro-2-iodo­aniline forming a chain parallel to the crystallographic a-axis. Displacement ellipsoids are shown at the 50% probability level; hydrogen atoms on carbon removed for clarity. For symmetry code (ii), see Table 1.

i x y z . DOI: 10.1107/S1600536814016869/jj2191fig3.tif

A view of the offset face-to-face π-stacking and Cl⋯Ii contact (thick solid line) in the packing of 4-Chloro-2-iodo­aniline. Displacement ellipsoids are shown at the 50% probability level. Symmetry code: (i): x − 1/2, −y + 3/2, −z.

CCDC reference: 1015344

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES