Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 1;70(Pt 9):m307–m308. doi: 10.1107/S1600536814015608

Crystal structure of poly[{μ-N,N′-bis[(pyridin-4-yl)meth­yl]oxalamide}-μ-oxalato-cobalt(II)]

Hengye Zou a, Yanjuan Qi a,*
PMCID: PMC4186178  PMID: 25309173

Abstract

In the polymeric title compound, [Co(C2O4)(C14H14N4O2)]n, the CoII atom is six-coordinated by two N atoms from symmetry-related bis­[(pyridin-4-yl)meth­yl]oxalamide (BPMO) ligands and four O atoms from two centrosymmetric oxalate anions in a distorted octa­hedral coordination geometry. The CoII atoms are linked by the oxalate anions into a chain running parallel to [100]. The chains are linked by the BPMO ligands into a three-dimensional architecture. In addition, N—H⋯O hydrogen bonds stabilize the crystal packing.

Keywords: crystal structure, metal-organic framework, cobalt(II), oxalate anion, hydrogen bonds

Related literature  

For information on compounds with metal-organic framework structures, see: Kitagawa et al. (2004); Ma et al. (2009); Li et al. (2005); Wang et al. (2007). For related CoII complexes, see: Ma et al. (2005).graphic file with name e-70-0m307-scheme1.jpg

Experimental  

Crystal data  

  • [Co(C2O4)(C14H14N4O2)]

  • M r = 417.24

  • Monoclinic, Inline graphic

  • a = 8.4143 (12) Å

  • b = 24.421 (4) Å

  • c = 9.2884 (14) Å

  • β = 113.322 (2)°

  • V = 1752.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 293 K

  • 0.43 × 0.25 × 0.25 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.740, T max = 0.785

  • 11121 measured reflections

  • 4254 independent reflections

  • 2027 reflections with I > 2σ(I)

  • R int = 0.085

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.149

  • S = 0.98

  • 4254 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814015608/bt6986sup1.cif

e-70-0m307-sup1.cif (26.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015608/bt6986Isup2.hkl

e-70-0m307-Isup2.hkl (204.2KB, hkl)

x y z x y z x y z x y z . DOI: 10.1107/S1600536814015608/bt6986fig1.tif

A view of the mol­ecule of (I). Displacement ellipsoids are drawn at the 30% probability level. (i) − x + 1, −y, − z + 1; (ii) −x, −y, − z + 1; (iii) x, − y + Inline graphic, z + Inline graphic; (iv) x + 1, − y + Inline graphic, z − Inline graphic.

. DOI: 10.1107/S1600536814015608/bt6986fig2.tif

View of the three-dimensional structure of (I).

CCDC reference: 1012047

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O6i 0.86 2.14 2.863 (5) 142

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Science Foundation of Jilin Province (No. 20140101121JC).

supplementary crystallographic information

S1. Comment

Design of effective ligands and the proper choice of metal centers are the keys to design and construct novel metal-organic frameworks (Kitagawa et al., 2004; Ma et al., 2009). These complexes can be specially designed by the careful selection of metal cations with preferred coordination geometries, the nature of the anions, the structure of the connecting ligands, and the reaction conditions (Li et al., 2005; Wang et al., 2007). We selected oxalic acid as an organic carboxylate anion and N,N'-Bis-pyridin-4-ylmethyl-oxalamide (BPMO) as a N-donor neutral ligand, generating a coordination compound, [Co(C2O4)(BPMO)]n, which is reported here.

In the asymmetric unit of the title compound, [Co(C2O4)(BPMO)]n, the central CoII is six-coordinated by two nitrogen atoms from different BPMO ligands and four oxygen atoms from two oxalate anions in a distorted octahedral coordination geometry. The Co—N and Co—O distances are comparable to those found in other crystallographically characterized CoII complexes (Ma et al., 2005). The CoII atoms are linked by the oxalate anions to give a one-dimensional chain. The chains are linked by BPMO ligands and extend the chains into a three-dimensional supramolecular architecture. Moreover, the hydrogen bonds between the N-donor neutral ligand and oxalate, are crucial for stabilizing the three-dimensional framework.

S2. Experimental

The synthesis was performed under hydrothermal conditions. A mixture of Co(CH3COO)2.4(H2O),(0.2 mmol, 0.05 g), N,N'-Bis-pyridin-4-ylmethyl-oxalamide (0.2 mmol, 0.054 g), sodium oxalate (0.2 mmol,0.026 g) and H2O(15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 443 K in 2 h and a constant temperature was maintained at 443 K for 72 h, after which the mixture was cooled to 298 K. Pink crystals of (I) were recovered from the reaction.

S3. Refinement

All H atoms on C and N atoms atoms were poisitioned geometrically and refined as riding atoms with Uiso(H) = 1.2 Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level. (i) - x + 1, -y, - z + 1; (ii) -x, -y, - z + 1; (iii) x, - y + 1/2, z + 1/2; (iv) x + 1, - y + 1/2, z - 1/2.

Fig. 2.

Fig. 2.

View of the three-dimensional structure of (I).

Crystal data

[Co(C2O4)(C14H14N4O2)] F(000) = 852
Mr = 417.24 Dx = 1.581 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4380 reflections
a = 8.4143 (12) Å θ = 1.7–22.8°
b = 24.421 (4) Å µ = 1.02 mm1
c = 9.2884 (14) Å T = 293 K
β = 113.322 (2)° Block, pink
V = 1752.7 (4) Å3 0.43 × 0.25 × 0.25 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 4254 independent reflections
Radiation source: fine-focus sealed tube 2027 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.085
phi and ω scans θmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −11→10
Tmin = 0.740, Tmax = 0.785 k = −32→32
11121 measured reflections l = −12→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0591P)2] where P = (Fo2 + 2Fc2)/3
4254 reflections (Δ/σ)max < 0.001
244 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5475 (6) 0.02677 (18) 0.5426 (6) 0.0391 (12)
C2 −0.0727 (6) 0.00051 (18) 0.4182 (6) 0.0373 (11)
C3 0.0325 (7) 0.0938 (2) 0.0435 (7) 0.0588 (15)
H3A −0.0628 0.0983 0.0692 0.071*
C4 0.0141 (7) 0.1061 (2) −0.1055 (7) 0.0644 (16)
H4 −0.0906 0.1187 −0.1797 0.077*
C5 0.1578 (7) 0.0990 (2) −0.1424 (6) 0.0553 (15)
H5 0.1507 0.1079 −0.2422 0.066*
C6 0.3094 (6) 0.07904 (17) −0.0329 (6) 0.0358 (11)
C7 0.3141 (6) 0.06856 (18) 0.1129 (6) 0.0413 (12)
H7 0.4172 0.0555 0.1884 0.050*
C8 0.4646 (6) 0.06836 (16) −0.0724 (6) 0.0398 (12)
H8A 0.5578 0.0537 0.0195 0.048*
H8B 0.4343 0.0409 −0.1543 0.048*
C9 0.5876 (6) 0.15839 (19) −0.0278 (6) 0.0372 (11)
C10 0.6436 (5) 0.20856 (18) −0.0958 (6) 0.0353 (11)
C11 0.7359 (6) 0.30333 (18) −0.0376 (6) 0.0411 (12)
H11A 0.7224 0.3306 0.0328 0.049*
H11B 0.6576 0.3130 −0.1432 0.049*
C12 0.9189 (6) 0.30606 (19) −0.0279 (5) 0.0396 (12)
C13 1.0379 (7) 0.2660 (2) 0.0275 (7) 0.0700 (18)
H13 1.0094 0.2334 0.0632 0.084*
C14 1.2033 (7) 0.2734 (2) 0.0312 (8) 0.083 (2)
H14 1.2859 0.2458 0.0666 0.100*
C15 1.2411 (7) 0.3229 (2) −0.0193 (7) 0.0631 (16)
H15 1.3517 0.3281 −0.0165 0.076*
C16 0.9683 (6) 0.35427 (19) −0.0767 (6) 0.0431 (12)
H16 0.8861 0.3819 −0.1153 0.052*
N1 0.1806 (5) 0.07571 (16) 0.1551 (5) 0.0455 (11)
N2 0.5257 (5) 0.11716 (15) −0.1243 (4) 0.0403 (10)
H2 0.5213 0.1190 −0.2183 0.048*
N3 0.6855 (4) 0.25082 (15) 0.0010 (4) 0.0423 (10)
H3 0.6826 0.2467 0.0918 0.051*
N4 1.1276 (5) 0.36374 (16) −0.0717 (5) 0.0439 (10)
O1 −0.0491 (4) 0.02611 (12) 0.3106 (4) 0.0434 (8)
O2 −0.2077 (4) −0.02540 (13) 0.4033 (4) 0.0503 (9)
O3 0.4618 (4) 0.07115 (12) 0.5055 (4) 0.0446 (9)
O4 0.6991 (4) 0.02217 (12) 0.6401 (4) 0.0494 (9)
O5 0.5999 (5) 0.15868 (13) 0.1070 (4) 0.0612 (11)
O6 0.6455 (4) 0.20801 (12) −0.2267 (4) 0.0464 (8)
Co1 0.20072 (8) 0.05586 (2) 0.38091 (8) 0.0405 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.035 (3) 0.043 (3) 0.049 (3) 0.003 (2) 0.026 (3) −0.001 (2)
C2 0.034 (3) 0.033 (2) 0.051 (3) 0.002 (2) 0.023 (2) −0.008 (2)
C3 0.050 (4) 0.067 (4) 0.068 (4) 0.013 (3) 0.034 (3) 0.009 (3)
C4 0.043 (4) 0.087 (4) 0.053 (4) 0.018 (3) 0.009 (3) 0.015 (3)
C5 0.063 (4) 0.061 (4) 0.044 (4) 0.003 (3) 0.023 (3) 0.001 (3)
C6 0.037 (3) 0.026 (2) 0.043 (3) −0.004 (2) 0.015 (3) −0.005 (2)
C7 0.034 (3) 0.044 (3) 0.046 (3) 0.006 (2) 0.016 (2) 0.004 (3)
C8 0.053 (3) 0.027 (2) 0.048 (3) −0.004 (2) 0.029 (3) −0.001 (2)
C9 0.035 (3) 0.041 (3) 0.037 (3) −0.010 (2) 0.016 (2) −0.002 (2)
C10 0.034 (3) 0.039 (3) 0.038 (3) −0.010 (2) 0.019 (2) −0.001 (2)
C11 0.048 (3) 0.040 (3) 0.044 (3) −0.010 (2) 0.027 (3) 0.001 (2)
C12 0.043 (3) 0.042 (3) 0.034 (3) −0.013 (2) 0.016 (2) −0.001 (2)
C13 0.052 (4) 0.045 (3) 0.109 (6) −0.009 (3) 0.028 (4) 0.015 (3)
C14 0.050 (4) 0.046 (4) 0.142 (7) 0.003 (3) 0.026 (4) 0.016 (4)
C15 0.045 (3) 0.048 (3) 0.104 (5) −0.003 (3) 0.036 (3) −0.003 (3)
C16 0.039 (3) 0.045 (3) 0.052 (3) −0.006 (2) 0.024 (3) 0.001 (3)
N1 0.041 (3) 0.047 (2) 0.054 (3) 0.0103 (19) 0.024 (2) 0.009 (2)
N2 0.052 (3) 0.041 (2) 0.035 (2) −0.0080 (19) 0.026 (2) −0.0039 (19)
N3 0.052 (3) 0.045 (2) 0.038 (3) −0.0204 (19) 0.026 (2) −0.005 (2)
N4 0.039 (2) 0.042 (2) 0.058 (3) −0.0088 (19) 0.027 (2) −0.005 (2)
O1 0.040 (2) 0.044 (2) 0.048 (2) 0.0012 (15) 0.0202 (17) 0.0061 (17)
O2 0.042 (2) 0.057 (2) 0.055 (2) −0.0090 (17) 0.0222 (18) −0.0050 (18)
O3 0.0356 (19) 0.0339 (18) 0.070 (3) 0.0063 (14) 0.0269 (18) 0.0041 (16)
O4 0.037 (2) 0.041 (2) 0.065 (3) 0.0040 (16) 0.0145 (19) −0.0052 (17)
O5 0.098 (3) 0.050 (2) 0.044 (2) −0.036 (2) 0.037 (2) −0.0086 (18)
O6 0.064 (2) 0.044 (2) 0.041 (2) −0.0107 (16) 0.0318 (19) −0.0026 (16)
Co1 0.0349 (4) 0.0385 (4) 0.0551 (5) 0.0057 (3) 0.0253 (3) 0.0030 (3)

Geometric parameters (Å, º)

C1—O4 1.243 (5) C11—N3 1.440 (5)
C1—O3 1.271 (5) C11—C12 1.508 (6)
C1—C1i 1.573 (9) C11—H11A 0.9700
C2—O2 1.259 (5) C11—H11B 0.9700
C2—O1 1.260 (5) C12—C13 1.348 (6)
C2—C2ii 1.527 (9) C12—C16 1.383 (6)
C3—N1 1.342 (6) C13—C14 1.390 (7)
C3—C4 1.363 (7) C13—H13 0.9300
C3—H3A 0.9300 C14—C15 1.380 (7)
C4—C5 1.392 (7) C14—H14 0.9300
C4—H4 0.9300 C15—N4 1.332 (6)
C5—C6 1.369 (6) C15—H15 0.9300
C5—H5 0.9300 C16—N4 1.343 (5)
C6—C7 1.364 (6) C16—H16 0.9300
C6—C8 1.512 (6) N1—Co1 2.093 (4)
C7—N1 1.339 (5) N2—H2 0.8600
C7—H7 0.9300 N3—H3 0.8600
C8—N2 1.454 (5) N4—Co1iii 2.155 (4)
C8—H8A 0.9700 O1—Co1 2.070 (3)
C8—H8B 0.9700 O2—Co1ii 2.117 (3)
C9—O5 1.215 (5) O3—Co1 2.072 (3)
C9—N2 1.311 (5) O4—Co1i 2.124 (3)
C9—C10 1.535 (6) Co1—O2ii 2.117 (3)
C10—O6 1.222 (5) Co1—O4i 2.124 (3)
C10—N3 1.322 (5) Co1—N4iv 2.155 (4)
O4—C1—O3 125.7 (4) C12—C13—H13 120.0
O4—C1—C1i 117.5 (5) C14—C13—H13 120.0
O3—C1—C1i 116.8 (6) C15—C14—C13 117.9 (5)
O2—C2—O1 125.5 (4) C15—C14—H14 121.0
O2—C2—C2ii 115.7 (6) C13—C14—H14 121.0
O1—C2—C2ii 118.8 (5) N4—C15—C14 123.5 (5)
N1—C3—C4 123.7 (5) N4—C15—H15 118.2
N1—C3—H3A 118.2 C14—C15—H15 118.2
C4—C3—H3A 118.2 N4—C16—C12 124.1 (4)
C3—C4—C5 117.5 (5) N4—C16—H16 117.9
C3—C4—H4 121.2 C12—C16—H16 117.9
C5—C4—H4 121.2 C7—N1—C3 116.5 (5)
C6—C5—C4 120.4 (5) C7—N1—Co1 121.2 (3)
C6—C5—H5 119.8 C3—N1—Co1 122.2 (3)
C4—C5—H5 119.8 C9—N2—C8 120.0 (4)
C7—C6—C5 117.2 (4) C9—N2—H2 120.0
C7—C6—C8 121.4 (4) C8—N2—H2 120.0
C5—C6—C8 121.5 (4) C10—N3—C11 123.5 (4)
N1—C7—C6 124.7 (5) C10—N3—H3 118.3
N1—C7—H7 117.7 C11—N3—H3 118.3
C6—C7—H7 117.7 C15—N4—C16 116.4 (4)
N2—C8—C6 113.1 (3) C15—N4—Co1iii 122.3 (3)
N2—C8—H8A 109.0 C16—N4—Co1iii 120.8 (3)
C6—C8—H8A 109.0 C2—O1—Co1 112.5 (3)
N2—C8—H8B 109.0 C2—O2—Co1ii 112.7 (3)
C6—C8—H8B 109.0 C1—O3—Co1 111.1 (3)
H8A—C8—H8B 107.8 C1—O4—Co1i 110.2 (3)
O5—C9—N2 123.9 (4) O1—Co1—O3 163.58 (13)
O5—C9—C10 120.3 (4) O1—Co1—N1 95.51 (15)
N2—C9—C10 115.8 (4) O3—Co1—N1 99.50 (14)
O6—C10—N3 125.5 (4) O1—Co1—O2ii 79.59 (13)
O6—C10—C9 121.8 (4) O3—Co1—O2ii 84.77 (12)
N3—C10—C9 112.7 (4) N1—Co1—O2ii 172.33 (14)
N3—C11—C12 114.8 (4) O1—Co1—O4i 92.68 (12)
N3—C11—H11A 108.6 O3—Co1—O4i 80.86 (12)
C12—C11—H11A 108.6 N1—Co1—O4i 89.62 (14)
N3—C11—H11B 108.6 O2ii—Co1—O4i 84.76 (13)
C12—C11—H11B 108.6 O1—Co1—N4iv 92.74 (13)
H11A—C11—H11B 107.6 O3—Co1—N4iv 92.70 (13)
C13—C12—C16 117.9 (4) N1—Co1—N4iv 94.43 (15)
C13—C12—C11 125.3 (4) O2ii—Co1—N4iv 91.71 (14)
C16—C12—C11 116.8 (4) O4i—Co1—N4iv 172.90 (15)
C12—C13—C14 120.0 (5)
N1—C3—C4—C5 0.2 (9) C14—C15—N4—Co1iii 171.3 (5)
C3—C4—C5—C6 1.7 (8) C12—C16—N4—C15 1.5 (8)
C4—C5—C6—C7 −2.3 (7) C12—C16—N4—Co1iii −171.1 (4)
C4—C5—C6—C8 177.0 (5) O2—C2—O1—Co1 −173.9 (3)
C5—C6—C7—N1 1.0 (7) C2ii—C2—O1—Co1 5.5 (6)
C8—C6—C7—N1 −178.3 (4) O1—C2—O2—Co1ii −174.5 (3)
C7—C6—C8—N2 −121.0 (5) C2ii—C2—O2—Co1ii 6.2 (6)
C5—C6—C8—N2 59.8 (6) O4—C1—O3—Co1 −166.2 (4)
O5—C9—C10—O6 174.2 (4) C1i—C1—O3—Co1 13.8 (6)
N2—C9—C10—O6 −6.6 (6) O3—C1—O4—Co1i −166.7 (4)
O5—C9—C10—N3 −6.6 (6) C1i—C1—O4—Co1i 13.4 (6)
N2—C9—C10—N3 172.6 (4) C2—O1—Co1—O3 11.5 (6)
N3—C11—C12—C13 −6.9 (7) C2—O1—Co1—N1 167.5 (3)
N3—C11—C12—C16 174.7 (4) C2—O1—Co1—O2ii −6.5 (3)
C16—C12—C13—C14 −1.3 (9) C2—O1—Co1—O4i 77.7 (3)
C11—C12—C13—C14 −179.7 (5) C2—O1—Co1—N4iv −97.7 (3)
C12—C13—C14—C15 1.6 (10) C1—O3—Co1—O1 51.8 (6)
C13—C14—C15—N4 −0.3 (10) C1—O3—Co1—N1 −104.0 (3)
C13—C12—C16—N4 −0.3 (8) C1—O3—Co1—O2ii 69.6 (3)
C11—C12—C16—N4 178.2 (4) C1—O3—Co1—O4i −15.9 (3)
C6—C7—N1—C3 0.9 (7) C1—O3—Co1—N4iv 161.1 (3)
C6—C7—N1—Co1 178.1 (3) C7—N1—Co1—O1 −142.6 (3)
C4—C3—N1—C7 −1.5 (8) C3—N1—Co1—O1 34.4 (4)
C4—C3—N1—Co1 −178.7 (4) C7—N1—Co1—O3 30.7 (4)
O5—C9—N2—C8 0.8 (7) C3—N1—Co1—O3 −152.3 (4)
C10—C9—N2—C8 −178.3 (4) C7—N1—Co1—O2ii −92.7 (11)
C6—C8—N2—C9 64.2 (6) C3—N1—Co1—O2ii 84.3 (11)
O6—C10—N3—C11 1.6 (7) C7—N1—Co1—O4i −50.0 (4)
C9—C10—N3—C11 −177.5 (4) C3—N1—Co1—O4i 127.0 (4)
C12—C11—N3—C10 −77.4 (6) C7—N1—Co1—N4iv 124.2 (4)
C14—C15—N4—C16 −1.2 (9) C3—N1—Co1—N4iv −58.8 (4)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z+1; (iii) x+1, −y+1/2, z−1/2; (iv) x−1, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···O6v 0.86 2.14 2.863 (5) 142

Symmetry code: (v) x, −y+1/2, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6986).

References

  1. Bruker (2002). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. [DOI] [PubMed]
  3. Li, F. F., Ma, J. F., Song, S. Y., Yang, J., Liu, Y. Y. & Su, Z. M. (2005). Inorg. Chem. 44, 9374–9383. [DOI] [PubMed]
  4. Ma, L. F., Wang, Y. Y., Liu, J. Q., Yang, G. P., Du, M. & Wang, L. Y. (2009). Eur. J. Inorg. Chem. pp. 147–254.
  5. Ma, J. F., Yang, J., Li, S. L. & Song, S. Y. (2005). Cryst. Growth Des. 5, 807–812.
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wang, G.-H., Li, Z.-G., Xu, J.-W. & Hu, N.-H. (2007). Acta Cryst. E63, m289–m291.
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814015608/bt6986sup1.cif

e-70-0m307-sup1.cif (26.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814015608/bt6986Isup2.hkl

e-70-0m307-Isup2.hkl (204.2KB, hkl)

x y z x y z x y z x y z . DOI: 10.1107/S1600536814015608/bt6986fig1.tif

A view of the mol­ecule of (I). Displacement ellipsoids are drawn at the 30% probability level. (i) − x + 1, −y, − z + 1; (ii) −x, −y, − z + 1; (iii) x, − y + Inline graphic, z + Inline graphic; (iv) x + 1, − y + Inline graphic, z − Inline graphic.

. DOI: 10.1107/S1600536814015608/bt6986fig2.tif

View of the three-dimensional structure of (I).

CCDC reference: 1012047

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES