Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 9;70(Pt 9):o987–o988. doi: 10.1107/S1600536814017905

Crystal structure of 2-[(E)-4-benz­yloxy-2-hy­droxy­benzyl­idene]-N-cyclo­hexyl­hydrazinecarbo­thio­amide aceto­nitrile hemisolvate

N R Sajitha a, M Sithambaresan b,*, M R Prathapachandra Kurup a
PMCID: PMC4186196  PMID: 25309295

Abstract

The asymmetric unit of the title compound, C21H25N3O2S·0.5C2H3N, contains two independent mol­ecules with almost similar structural properties along with a solvent mol­ecule of aceto­nitrile. The compound exists in the E conformation with respect to the azomethine C=N double bond. The hydrazinecarbo­thio­amide moieties in both independent mol­ecules are almost planar [maximum deviations of 0.013 (2) and 0.007 (2) Å]. The mol­ecular conformation is stabilized in each case by an intra­molecular N—H⋯N hydrogen bond. In the crystal, pairs of N—H⋯S hydrogen bonds link each of the independent mol­ecules into inversion dimers. The dimers are inter­connected by means of three C—H⋯π inter­actions.

Keywords: crystal structure, hydrazinecarbo­thio­amide, hydrogen bonding, C—H⋯π inter­actions, anti­microbial applications

Related literature  

For anti­microbial application, see: Joseph et al. (2004). For fluorescence activity, see: Kumar et al. (2013). For versatile coordination ability, see: Sreekanth et al. (2004). For the synthesis of related compounds, see: Jacob & Kurup (2012). For related structures, see: Seena et al. (2006); Jacob & Kurup (2012). graphic file with name e-70-0o987-scheme1.jpg

Experimental  

Crystal data  

  • 2C21H25N3O2S·C2H3N

  • M r = 808.07

  • Triclinic, Inline graphic

  • a = 10.5345 (4) Å

  • b = 10.8341 (4) Å

  • c = 21.8169 (10) Å

  • α = 97.241 (2)°

  • β = 92.120 (2)°

  • γ = 118.901 (2)°

  • V = 2148.72 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 296 K

  • 0.50 × 0.20 × 0.18 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan SADABS (Bruker, 2004) T min = 0.918, T max = 0.942

  • 15933 measured reflections

  • 9260 independent reflections

  • 6918 reflections with I > 2σ(I)

  • R int = 0.018

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.136

  • S = 1.03

  • 9260 reflections

  • 540 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) Global, I. DOI: 10.1107/S1600536814017905/bv2235sup1.cif

e-70-0o987-sup1.cif (45KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017905/bv2235Isup2.hkl

e-70-0o987-Isup2.hkl (452.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814017905/bv2235Isup3.cml

ORTEP E N . DOI: 10.1107/S1600536814017905/bv2235fig1.tif

ORTEP diagram of (E)-2-(4-benz­yloxy-2-hy­droxy­benzyl­idene)-N-cyclo­hexyl­hydrazinecarbo­thio­amide with 50% probability ellipsoids.

21 25 3 2 2 3 . DOI: 10.1107/S1600536814017905/bv2235fig2.tif

Hydrogen-bond inter­actions of the title compound, [C21H25N3O2S]·0.5C2H3N.

. DOI: 10.1107/S1600536814017905/bv2235fig3.tif

C—H⋯π inter­actions of the title compound.

a . DOI: 10.1107/S1600536814017905/bv2235fig4.tif

Packing diagram of the title compound along a axis.

CCDC reference: 1017712

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5′⋯S2i 0.88 (1) 2.48 (1) 3.3495 (17) 173 (2)
N2—H2′⋯S1ii 0.87 (1) 2.44 (1) 3.3047 (16) 171 (2)
O2—H2A⋯N1 0.84 (1) 1.96 (2) 2.696 (2) 146 (3)
O4—H4′⋯N4 0.84 (1) 1.94 (2) 2.680 (2) 146 (2)
C12—H12⋯Cg1iii 0.93 2.95 3.811 (2) 154
C20—H20BCg2iv 0.96 2.87 3.715 (2) 146
C31—H31⋯Cg4v 0.93 2.84 3.714 (2) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

NRS thanks the Council of Scientific and Industrial Research (India) for a Junior Research Fellowship. MRPK thanks the University Grants Commission, New Delhi, India, for a UGC–BSR one-time grant to faculty. The authors thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, for the diffraction measurements and IR data.

supplementary crystallographic information

S1. Comment

Thiosemicarbazones are important class of compounds due to their antimicrobial activity (Joseph et al., 2004). They are also found to act as turn on fluorescent sensors for fluoride anion (Kumar et al., 2013). These compounds are important due to their ability to show versatile coordination abilities in complexes (Sreekanth et al., 2004). Here we present a new N4-substituted thioemicarbazone with interesting structural properties.

The asymmetric unit of the title compound consists of two independent molecules of the thiosemicarbazone and one acetonitrile molecule giving an overall ratio of thiosemicarbazone to acetonitrile to 2:1. The compound crystallizes into triclinic space group P-1. The geometric parameters of each molecule are almost identical. The molecules adopt E configuration with respect to C14—N1 and C35—N4 bonds which is confirmed by the C14/N1/N2/C15 and C35/N4/N5/C36 torsion angles of -177.55 (17)° and 175.50 (18)° respectively (Fig.1). The N1/N2/C15/S1 and N4/N5/C36/S2 torsion angles of 171.78 (3)° and -173.54 (4)° suggest that the thionyl atom S1 of the first molecule and S2 of the second molecule are located trans to azomethine nitrogens N1 and N4 respectively. The torsion angles -6.0 (3)° and 5.2 (3)° for N1/N2/C15/N3 and N4/N5/C36/N6 respectively confirm the cis configuration of N1 with respect to N3 and N4 with respect to N6.

The C14—N1 and C35—N4 bond distances [1.281 (2) and 1.278 (2) Å] are close to that of formal C═N bond [1.284 (3) Å] (Seena et al., 2006). Similarly the C15—S1 and C36—S2 bond distances [1.6835 (17) Å and 1.6824 (17) Å] are also close to that of formal C═S bond [1.68 (3) Å] (Jacob & Kurup, 2012). The hydrazine carbothioamide moieties in both molecules are almost planar with maximum deviation of 0.013 (2) Å for atom C15 and 0.007 (2) Å for C36 respectively from their least square planes. The cyclohexyl rings in both the molecules adopt chair conformation. The least square plane calculations show that the rings C1–C6/C8–C13 in one molecule and C22–C27/C29–C34 in the other molecule are twisted with a dihedral angles of 82.93 (120)° and 88.59 (12)° respectively.

Whilst one the molecules in the asymmetric unit has only one intramolecular hydrogen bond of the type O—H···N with D···A distance 2.696 (2) Å and one N—H···S type intermolecular hydrogen bonding interaction with D···A distance 3.3046 (18) Å, the other molecule has two types of intramolecular hydrogen bonds of O—H···N and N—H···N with D···A distances 2.680 (2) and 2.655 (3) Å respectively along with one type of N—H···S intermolecular hydrogen bonding with D···A distance 3.3495 (18) Å (Table 1). All these intermolecular interactions present in two asymmetric molecules build two centrosymmetric dimers in the crystal lattice (Fig 2). These dimers are interconnected by means of three C—H···π interactions with H···π distances of 2.95, 2.87 and 2.84 Å (Fig. 3). Fig 4 shows the packing of molecules along crystallographic a axis.

S2. Experimental

The preparation of the compound involves a two step process (Jacob & Kurup, 2012). In the first step, cyclohexylisothiocyanate (15 mmol, 2 ml) in 15 ml methanol and hydrazine hydrate (90 mmol, 4.3 ml) in 15 ml methanol were mixed and the resulting solution was stirred for an hour when the colourless product, N(4)-cyclohexylthiosemicarbazide formed was filtered, washed with methanol and dried in vacuo. In the second step, 4-benzyloxy-2-hydroxybenzaldehyde (0.2283 g, 1 mmol), dissolved in 15 ml acetonitrile was added to a solution of N(4)-cyclohexylthiosemicarbazide in 10 ml acetonitrile and the reaction mixture was refluxed for 3 hrs in acidic medium. The resultant solution was kept for one week to give yellow crystals of the compound (yield 51.59%, 0.1978 g)

IR (KBr, ν in cm-1): 3400, 3130, 2985, 2929, 2851, 1627, 1599, 1540, 1505, 1224.

S3. Refinement

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances of 0.93 Å. H atoms were assigned Uiso(H) values of 1.2Ueq (carrier). H atoms of N—H bonds were located from difference maps and the bond distances are restrained to 0.88±0.01 Å. Omitted owing to bad disagreement was (0 0 2). The phenolic H atoms were located from difference maps and the O–H bond distances were restrained to 0.84±0.01 Å.

Figures

Fig. 1.

Fig. 1.

ORTEP diagram of (E)-2-(4-benzyloxy-2-hydroxybenzylidene)-N-cyclohexylhydrazinecarbothioamide with 50% probability ellipsoids.

Fig. 2.

Fig. 2.

Hydrogen-bond interactions of the title compound, [C21H25N3O2S]·0.5C2H3N.

Fig. 3.

Fig. 3.

C—H···π interactions of the title compound.

Fig. 4.

Fig. 4.

Packing diagram of the title compound along a axis.

Crystal data

2C21H25N3O2S·C2H3N Z = 2
Mr = 808.07 F(000) = 860
Triclinic, P1 Dx = 1.249 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.5345 (4) Å Cell parameters from 6744 reflections
b = 10.8341 (4) Å θ = 2.2–28.1°
c = 21.8169 (10) Å µ = 0.17 mm1
α = 97.241 (2)° T = 296 K
β = 92.120 (2)° Needle, yellow
γ = 118.901 (2)° 0.50 × 0.20 × 0.18 mm
V = 2148.72 (15) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 9260 independent reflections
Radiation source: fine-focus sealed tube 6918 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.018
ω and φ scan θmax = 27.0°, θmin = 1.0°
Absorption correction: multi-scan SADABS (Bruker, 2004) h = −13→13
Tmin = 0.918, Tmax = 0.942 k = −13→13
15933 measured reflections l = −27→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.7212P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
9260 reflections Δρmax = 0.39 e Å3
540 parameters Δρmin = −0.25 e Å3
6 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0036 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.60227 (5) 0.39508 (6) 0.07407 (3) 0.05080 (16)
S2 0.62422 (6) 0.49312 (6) 0.42617 (3) 0.05093 (16)
O1 0.50839 (13) 0.84763 (15) 0.05748 (7) 0.0500 (4)
O2 0.04715 (15) 0.53001 (16) 0.11875 (8) 0.0542 (4)
O3 0.15464 (15) 1.13678 (15) 0.44214 (7) 0.0484 (4)
O4 0.48815 (17) 0.97664 (18) 0.38472 (8) 0.0576 (4)
N1 −0.18643 (14) 0.53120 (15) 0.06462 (7) 0.0339 (3)
N2 −0.33002 (15) 0.49724 (17) 0.05214 (8) 0.0380 (4)
N3 −0.39713 (15) 0.35494 (16) 0.12662 (7) 0.0364 (3)
N4 0.47289 (17) 0.75978 (16) 0.43719 (7) 0.0378 (3)
N5 0.51039 (18) 0.65922 (17) 0.44969 (8) 0.0420 (4)
N6 0.65106 (19) 0.70656 (17) 0.36985 (8) 0.0451 (4)
N7 0.3302 (6) 0.4151 (5) 0.2682 (2) 0.1717 (19)
C1 0.8362 (2) 0.9162 (3) 0.07453 (12) 0.0616 (6)
H1 0.8023 0.8397 0.0420 0.074*
C2 0.9830 (3) 1.0168 (3) 0.08441 (14) 0.0701 (7)
H2 1.0472 1.0058 0.0591 0.084*
C3 1.0339 (2) 1.1302 (3) 0.12998 (14) 0.0702 (7)
H3 1.1325 1.1982 0.1359 0.084*
C4 0.9401 (3) 1.1445 (3) 0.16734 (16) 0.0886 (10)
H4 0.9744 1.2227 0.1991 0.106*
C5 0.7939 (3) 1.0434 (3) 0.15839 (14) 0.0759 (8)
H5 0.7307 1.0541 0.1844 0.091*
C6 0.74039 (19) 0.9283 (2) 0.11217 (11) 0.0467 (5)
C7 0.5819 (2) 0.8176 (2) 0.10456 (13) 0.0579 (6)
H7A 0.5705 0.7231 0.0928 0.070*
H7B 0.5409 0.8202 0.1435 0.070*
C8 0.35980 (18) 0.78021 (19) 0.05220 (9) 0.0384 (4)
C9 0.27479 (18) 0.67962 (19) 0.08791 (9) 0.0396 (4)
H9 0.3177 0.6486 0.1158 0.048*
C10 0.12462 (18) 0.62556 (18) 0.08164 (9) 0.0357 (4)
C11 0.05770 (17) 0.66738 (17) 0.03884 (9) 0.0333 (4)
C12 0.14739 (19) 0.76540 (19) 0.00217 (9) 0.0390 (4)
H12 0.1049 0.7930 −0.0275 0.047*
C13 0.29580 (19) 0.8219 (2) 0.00862 (10) 0.0416 (4)
H13 0.3530 0.8876 −0.0160 0.050*
C14 −0.09743 (17) 0.61556 (18) 0.03108 (9) 0.0340 (4)
H14 −0.1347 0.6449 0.0002 0.041*
C15 −0.43444 (17) 0.41394 (17) 0.08528 (8) 0.0327 (4)
C16 −0.49581 (18) 0.26337 (18) 0.16725 (8) 0.0345 (4)
H16 −0.5634 0.2984 0.1783 0.041*
C17 −0.4086 (2) 0.2746 (2) 0.22629 (10) 0.0483 (5)
H17A −0.3572 0.3731 0.2473 0.058*
H17B −0.3367 0.2461 0.2161 0.058*
C18 −0.5082 (2) 0.1797 (2) 0.26935 (10) 0.0549 (5)
H18A −0.4495 0.1831 0.3055 0.066*
H18B −0.5719 0.2160 0.2836 0.066*
C19 −0.5994 (3) 0.0272 (2) 0.23745 (12) 0.0593 (6)
H19A −0.6665 −0.0283 0.2652 0.071*
H19B −0.5365 −0.0131 0.2280 0.071*
C20 −0.6847 (2) 0.0171 (2) 0.17822 (12) 0.0580 (6)
H20A −0.7556 0.0473 0.1881 0.070*
H20B −0.7374 −0.0814 0.1574 0.070*
C21 −0.5842 (2) 0.1104 (2) 0.13481 (10) 0.0487 (5)
H21A −0.5191 0.0749 0.1218 0.058*
H21B −0.6419 0.1059 0.0980 0.058*
C22 −0.0343 (3) 1.1977 (3) 0.34536 (13) 0.0700 (7)
H22 −0.0480 1.1139 0.3215 0.084*
C23 −0.1360 (3) 1.2417 (3) 0.33712 (15) 0.0828 (9)
H23 −0.2180 1.1869 0.3083 0.099*
C24 −0.1165 (3) 1.3645 (3) 0.37091 (13) 0.0654 (7)
H24 −0.1835 1.3956 0.3645 0.078*
C25 0.0003 (3) 1.4413 (3) 0.41389 (14) 0.0728 (7)
H25 0.0134 1.5251 0.4375 0.087*
C26 0.1011 (3) 1.3960 (2) 0.42301 (14) 0.0663 (7)
H26 0.1802 1.4488 0.4534 0.080*
C27 0.0858 (2) 1.2751 (2) 0.38802 (10) 0.0445 (5)
C28 0.1956 (2) 1.2258 (2) 0.39536 (12) 0.0550 (6)
H28A 0.1967 1.1726 0.3563 0.066*
H28B 0.2923 1.3073 0.4075 0.066*
C29 0.22107 (19) 1.05710 (19) 0.44817 (9) 0.0371 (4)
C30 0.1700 (2) 0.9661 (2) 0.49167 (10) 0.0444 (5)
H30 0.0989 0.9654 0.5159 0.053*
C31 0.2259 (2) 0.8774 (2) 0.49842 (10) 0.0420 (4)
H31 0.1922 0.8171 0.5279 0.050*
C32 0.33155 (19) 0.87403 (18) 0.46276 (9) 0.0342 (4)
C33 0.38348 (19) 0.96924 (19) 0.42039 (9) 0.0363 (4)
C34 0.3293 (2) 1.0614 (2) 0.41346 (9) 0.0387 (4)
H34 0.3658 1.1255 0.3856 0.046*
C35 0.38347 (19) 0.77485 (18) 0.47119 (9) 0.0373 (4)
H35 0.3504 0.7199 0.5026 0.045*
C36 0.5958 (2) 0.62855 (19) 0.41394 (9) 0.0365 (4)
C37 0.7455 (2) 0.6898 (2) 0.32651 (9) 0.0426 (4)
H37 0.7157 0.5879 0.3177 0.051*
C38 0.9025 (3) 0.7690 (3) 0.35401 (13) 0.0663 (7)
H38A 0.9126 0.7339 0.3916 0.080*
H38B 0.9340 0.8700 0.3650 0.080*
C39 0.9981 (3) 0.7489 (4) 0.30791 (17) 0.0894 (10)
H39A 0.9722 0.6490 0.2998 0.107*
H39B 1.0995 0.8041 0.3256 0.107*
C40 0.9792 (4) 0.7970 (3) 0.24691 (17) 0.0951 (11)
H40A 1.0133 0.8989 0.2544 0.114*
H40B 1.0376 0.7793 0.2174 0.114*
C41 0.8222 (4) 0.7181 (3) 0.22016 (13) 0.0812 (9)
H41A 0.7916 0.6174 0.2086 0.097*
H41B 0.8117 0.7539 0.1828 0.097*
C42 0.7237 (3) 0.7347 (3) 0.26621 (12) 0.0688 (7)
H42A 0.7459 0.8336 0.2740 0.083*
H42B 0.6225 0.6764 0.2486 0.083*
C43 0.2358 (7) 0.5888 (6) 0.2730 (3) 0.170 (2)
H43A 0.2010 0.5951 0.3127 0.256*
H43B 0.1575 0.5572 0.2405 0.256*
H43C 0.3136 0.6810 0.2682 0.256*
C44 0.2868 (4) 0.4920 (5) 0.2694 (2) 0.1059 (11)
H3' −0.3084 (13) 0.368 (2) 0.1287 (10) 0.047 (6)*
H6 0.631 (2) 0.7759 (16) 0.3704 (10) 0.046 (6)*
H5' 0.473 (2) 0.611 (2) 0.4799 (8) 0.051 (6)*
H2' −0.349 (2) 0.533 (2) 0.0218 (8) 0.057 (7)*
H2A −0.0407 (13) 0.508 (3) 0.1130 (13) 0.078 (9)*
H4' 0.516 (3) 0.920 (2) 0.3942 (12) 0.064 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0261 (2) 0.0718 (3) 0.0646 (4) 0.0249 (2) 0.0140 (2) 0.0391 (3)
S2 0.0694 (4) 0.0562 (3) 0.0588 (3) 0.0499 (3) 0.0283 (3) 0.0274 (3)
O1 0.0206 (6) 0.0553 (8) 0.0659 (10) 0.0111 (6) 0.0027 (6) 0.0155 (7)
O2 0.0293 (7) 0.0642 (9) 0.0646 (10) 0.0139 (7) 0.0056 (7) 0.0353 (8)
O3 0.0501 (8) 0.0593 (8) 0.0634 (9) 0.0430 (7) 0.0211 (7) 0.0294 (7)
O4 0.0688 (10) 0.0879 (11) 0.0613 (10) 0.0645 (9) 0.0364 (8) 0.0435 (9)
N1 0.0213 (6) 0.0393 (8) 0.0391 (8) 0.0130 (6) 0.0025 (6) 0.0082 (6)
N2 0.0224 (7) 0.0496 (9) 0.0448 (9) 0.0164 (6) 0.0067 (6) 0.0218 (7)
N3 0.0230 (7) 0.0445 (8) 0.0432 (9) 0.0151 (6) 0.0057 (6) 0.0182 (7)
N4 0.0445 (8) 0.0399 (8) 0.0437 (9) 0.0305 (7) 0.0082 (7) 0.0130 (7)
N5 0.0544 (10) 0.0471 (9) 0.0483 (10) 0.0393 (8) 0.0204 (8) 0.0224 (8)
N6 0.0562 (10) 0.0451 (9) 0.0538 (10) 0.0361 (8) 0.0229 (8) 0.0221 (8)
N7 0.191 (5) 0.199 (5) 0.184 (5) 0.141 (4) 0.050 (4) 0.026 (4)
C1 0.0497 (13) 0.0629 (14) 0.0688 (16) 0.0271 (11) 0.0060 (11) 0.0017 (12)
C2 0.0409 (12) 0.097 (2) 0.0799 (19) 0.0362 (13) 0.0195 (12) 0.0247 (16)
C3 0.0278 (10) 0.0832 (18) 0.0795 (19) 0.0097 (11) −0.0039 (11) 0.0250 (15)
C4 0.0506 (15) 0.0773 (18) 0.093 (2) 0.0053 (13) −0.0019 (14) −0.0199 (16)
C5 0.0414 (12) 0.0736 (16) 0.093 (2) 0.0185 (12) 0.0145 (13) −0.0135 (14)
C6 0.0256 (9) 0.0454 (10) 0.0662 (14) 0.0157 (8) −0.0020 (9) 0.0095 (10)
C7 0.0294 (10) 0.0527 (12) 0.0854 (17) 0.0143 (9) −0.0028 (10) 0.0183 (12)
C8 0.0220 (8) 0.0373 (9) 0.0488 (11) 0.0103 (7) 0.0027 (7) 0.0017 (8)
C9 0.0264 (8) 0.0402 (9) 0.0490 (11) 0.0142 (7) −0.0014 (8) 0.0079 (8)
C10 0.0264 (8) 0.0336 (8) 0.0425 (10) 0.0107 (7) 0.0035 (7) 0.0079 (7)
C11 0.0233 (8) 0.0326 (8) 0.0402 (10) 0.0110 (7) 0.0034 (7) 0.0046 (7)
C12 0.0292 (9) 0.0412 (9) 0.0452 (11) 0.0149 (8) 0.0034 (8) 0.0124 (8)
C13 0.0281 (9) 0.0410 (10) 0.0490 (11) 0.0102 (8) 0.0083 (8) 0.0131 (8)
C14 0.0255 (8) 0.0366 (9) 0.0387 (10) 0.0137 (7) 0.0022 (7) 0.0091 (7)
C15 0.0242 (8) 0.0348 (8) 0.0380 (10) 0.0129 (7) 0.0041 (7) 0.0092 (7)
C16 0.0297 (8) 0.0363 (9) 0.0383 (10) 0.0150 (7) 0.0075 (7) 0.0128 (7)
C17 0.0415 (10) 0.0488 (11) 0.0472 (12) 0.0149 (9) 0.0008 (9) 0.0158 (9)
C18 0.0548 (13) 0.0676 (14) 0.0455 (12) 0.0284 (11) 0.0095 (10) 0.0270 (11)
C19 0.0565 (13) 0.0598 (13) 0.0741 (16) 0.0309 (11) 0.0267 (12) 0.0380 (12)
C20 0.0491 (12) 0.0432 (11) 0.0670 (15) 0.0092 (9) 0.0145 (11) 0.0160 (10)
C21 0.0474 (11) 0.0409 (10) 0.0459 (12) 0.0123 (9) 0.0067 (9) 0.0072 (9)
C22 0.0744 (16) 0.0748 (16) 0.0774 (18) 0.0561 (14) −0.0123 (14) −0.0097 (13)
C23 0.0769 (18) 0.112 (2) 0.080 (2) 0.0692 (18) −0.0205 (15) −0.0063 (17)
C24 0.0754 (16) 0.0935 (18) 0.0693 (16) 0.0695 (16) 0.0170 (14) 0.0320 (14)
C25 0.0910 (19) 0.0588 (14) 0.091 (2) 0.0547 (15) 0.0133 (17) 0.0093 (14)
C26 0.0603 (14) 0.0538 (13) 0.0848 (19) 0.0312 (12) −0.0106 (13) 0.0033 (12)
C27 0.0422 (10) 0.0472 (10) 0.0598 (13) 0.0303 (9) 0.0115 (9) 0.0236 (10)
C28 0.0467 (11) 0.0628 (13) 0.0794 (16) 0.0383 (11) 0.0190 (11) 0.0393 (12)
C29 0.0362 (9) 0.0419 (9) 0.0457 (11) 0.0275 (8) 0.0064 (8) 0.0131 (8)
C30 0.0419 (10) 0.0558 (11) 0.0542 (12) 0.0347 (9) 0.0208 (9) 0.0218 (9)
C31 0.0424 (10) 0.0477 (10) 0.0506 (12) 0.0292 (9) 0.0182 (9) 0.0238 (9)
C32 0.0348 (9) 0.0364 (9) 0.0398 (10) 0.0227 (7) 0.0063 (7) 0.0112 (7)
C33 0.0370 (9) 0.0469 (10) 0.0375 (10) 0.0282 (8) 0.0103 (8) 0.0148 (8)
C34 0.0406 (10) 0.0464 (10) 0.0435 (11) 0.0289 (8) 0.0117 (8) 0.0214 (8)
C35 0.0405 (9) 0.0381 (9) 0.0429 (10) 0.0247 (8) 0.0098 (8) 0.0144 (8)
C36 0.0409 (9) 0.0384 (9) 0.0394 (10) 0.0259 (8) 0.0072 (8) 0.0094 (8)
C37 0.0469 (11) 0.0385 (9) 0.0473 (11) 0.0228 (8) 0.0161 (9) 0.0127 (8)
C38 0.0500 (13) 0.0692 (15) 0.0706 (17) 0.0236 (12) 0.0104 (12) 0.0043 (13)
C39 0.0498 (14) 0.095 (2) 0.114 (3) 0.0298 (15) 0.0298 (16) 0.0049 (19)
C40 0.090 (2) 0.0655 (16) 0.116 (3) 0.0219 (16) 0.072 (2) 0.0228 (17)
C41 0.108 (2) 0.0781 (18) 0.0607 (17) 0.0425 (17) 0.0419 (16) 0.0292 (14)
C42 0.0760 (17) 0.0828 (17) 0.0606 (15) 0.0430 (14) 0.0248 (13) 0.0340 (13)
C43 0.236 (6) 0.213 (6) 0.147 (5) 0.177 (5) 0.008 (4) 0.031 (4)
C44 0.092 (2) 0.127 (3) 0.106 (3) 0.060 (2) 0.021 (2) 0.011 (2)

Geometric parameters (Å, º)

S1—C15 1.6834 (17) C18—H18A 0.9700
S2—C36 1.6824 (17) C18—H18B 0.9700
O1—C8 1.363 (2) C19—C20 1.508 (3)
O1—C7 1.424 (3) C19—H19A 0.9700
O2—C10 1.355 (2) C19—H19B 0.9700
O2—H2A 0.838 (10) C20—C21 1.524 (3)
O3—C29 1.3631 (19) C20—H20A 0.9700
O3—C28 1.427 (2) C20—H20B 0.9700
O4—C33 1.350 (2) C21—H21A 0.9700
O4—H4' 0.843 (10) C21—H21B 0.9700
N1—C14 1.281 (2) C22—C27 1.364 (3)
N1—N2 1.3798 (19) C22—C23 1.382 (3)
N2—C15 1.346 (2) C22—H22 0.9300
N2—H2' 0.872 (9) C23—C24 1.353 (4)
N3—C15 1.318 (2) C23—H23 0.9300
N3—C16 1.464 (2) C24—C25 1.347 (4)
N3—H3' 0.873 (9) C24—H24 0.9300
N4—C35 1.278 (2) C25—C26 1.385 (3)
N4—N5 1.3786 (19) C25—H25 0.9300
N5—C36 1.343 (2) C26—C27 1.364 (3)
N5—H5' 0.875 (9) C26—H26 0.9300
N6—C36 1.323 (2) C27—C28 1.501 (2)
N6—C37 1.455 (2) C28—H28A 0.9700
N6—H6 0.875 (9) C28—H28B 0.9700
N7—C44 1.125 (5) C29—C34 1.378 (2)
C1—C6 1.368 (3) C29—C30 1.387 (3)
C1—C2 1.383 (3) C30—C31 1.366 (2)
C1—H1 0.9300 C30—H30 0.9300
C2—C3 1.342 (4) C31—C32 1.394 (2)
C2—H2 0.9300 C31—H31 0.9300
C3—C4 1.357 (4) C32—C33 1.396 (2)
C3—H3 0.9300 C32—C35 1.448 (2)
C4—C5 1.380 (3) C33—C34 1.388 (2)
C4—H4 0.9300 C34—H34 0.9300
C5—C6 1.361 (3) C35—H35 0.9300
C5—H5 0.9300 C37—C38 1.503 (3)
C6—C7 1.499 (3) C37—C42 1.506 (3)
C7—H7A 0.9700 C37—H37 0.9800
C7—H7B 0.9700 C38—C39 1.518 (4)
C8—C13 1.385 (3) C38—H38A 0.9700
C8—C9 1.385 (3) C38—H38B 0.9700
C9—C10 1.390 (2) C39—C40 1.529 (5)
C9—H9 0.9300 C39—H39A 0.9700
C10—C11 1.393 (2) C39—H39B 0.9700
C11—C12 1.400 (2) C40—C41 1.498 (5)
C11—C14 1.443 (2) C40—H40A 0.9700
C12—C13 1.370 (2) C40—H40B 0.9700
C12—H12 0.9300 C41—C42 1.527 (4)
C13—H13 0.9300 C41—H41A 0.9700
C14—H14 0.9300 C41—H41B 0.9700
C16—C21 1.509 (3) C42—H42A 0.9700
C16—C17 1.511 (3) C42—H42B 0.9700
C16—H16 0.9800 C43—C44 1.386 (6)
C17—C18 1.521 (3) C43—H43A 0.9600
C17—H17A 0.9700 C43—H43B 0.9600
C17—H17B 0.9700 C43—H43C 0.9600
C18—C19 1.505 (3)
C8—O1—C7 118.05 (16) C16—C21—H21A 109.6
C10—O2—H2A 109.1 (19) C20—C21—H21A 109.6
C29—O3—C28 118.03 (15) C16—C21—H21B 109.6
C33—O4—H4' 108.7 (17) C20—C21—H21B 109.6
C14—N1—N2 115.26 (14) H21A—C21—H21B 108.1
C15—N2—N1 121.70 (15) C27—C22—C23 121.0 (2)
C15—N2—H2' 122.2 (15) C27—C22—H22 119.5
N1—N2—H2' 116.1 (15) C23—C22—H22 119.5
C15—N3—C16 124.67 (14) C24—C23—C22 120.2 (3)
C15—N3—H3' 117.7 (14) C24—C23—H23 119.9
C16—N3—H3' 117.6 (14) C22—C23—H23 119.9
C35—N4—N5 116.27 (15) C25—C24—C23 119.6 (2)
C36—N5—N4 120.82 (15) C25—C24—H24 120.2
C36—N5—H5' 120.2 (15) C23—C24—H24 120.2
N4—N5—H5' 118.9 (15) C24—C25—C26 120.3 (2)
C36—N6—C37 125.36 (15) C24—C25—H25 119.9
C36—N6—H6 113.2 (14) C26—C25—H25 119.9
C37—N6—H6 121.3 (14) C27—C26—C25 120.9 (2)
C6—C1—C2 120.6 (2) C27—C26—H26 119.5
C6—C1—H1 119.7 C25—C26—H26 119.5
C2—C1—H1 119.7 C26—C27—C22 117.92 (19)
C3—C2—C1 120.8 (2) C26—C27—C28 122.2 (2)
C3—C2—H2 119.6 C22—C27—C28 119.9 (2)
C1—C2—H2 119.6 O3—C28—C27 107.81 (16)
C2—C3—C4 119.3 (2) O3—C28—H28A 110.1
C2—C3—H3 120.3 C27—C28—H28A 110.1
C4—C3—H3 120.3 O3—C28—H28B 110.1
C3—C4—C5 120.2 (3) C27—C28—H28B 110.1
C3—C4—H4 119.9 H28A—C28—H28B 108.5
C5—C4—H4 119.9 O3—C29—C34 123.98 (16)
C6—C5—C4 121.2 (2) O3—C29—C30 115.26 (16)
C6—C5—H5 119.4 C34—C29—C30 120.75 (15)
C4—C5—H5 119.4 C31—C30—C29 118.94 (17)
C5—C6—C1 117.9 (2) C31—C30—H30 120.5
C5—C6—C7 120.2 (2) C29—C30—H30 120.5
C1—C6—C7 121.9 (2) C30—C31—C32 122.41 (17)
O1—C7—C6 108.31 (17) C30—C31—H31 118.8
O1—C7—H7A 110.0 C32—C31—H31 118.8
C6—C7—H7A 110.0 C31—C32—C33 117.39 (15)
O1—C7—H7B 110.0 C31—C32—C35 119.59 (16)
C6—C7—H7B 110.0 C33—C32—C35 123.01 (16)
H7A—C7—H7B 108.4 O4—C33—C34 117.05 (16)
O1—C8—C13 115.07 (16) O4—C33—C32 121.98 (15)
O1—C8—C9 124.33 (17) C34—C33—C32 120.97 (16)
C13—C8—C9 120.58 (15) C29—C34—C33 119.46 (16)
C8—C9—C10 119.27 (17) C29—C34—H34 120.3
C8—C9—H9 120.4 C33—C34—H34 120.3
C10—C9—H9 120.4 N4—C35—C32 122.63 (16)
O2—C10—C9 116.81 (16) N4—C35—H35 118.7
O2—C10—C11 121.93 (15) C32—C35—H35 118.7
C9—C10—C11 121.26 (16) N6—C36—N5 117.15 (15)
C10—C11—C12 117.46 (15) N6—C36—S2 123.67 (14)
C10—C11—C14 123.34 (16) N5—C36—S2 119.17 (14)
C12—C11—C14 119.19 (16) N6—C37—C38 111.66 (18)
C13—C12—C11 122.03 (17) N6—C37—C42 109.76 (17)
C13—C12—H12 119.0 C38—C37—C42 112.18 (19)
C11—C12—H12 119.0 N6—C37—H37 107.7
C12—C13—C8 119.33 (17) C38—C37—H37 107.7
C12—C13—H13 120.3 C42—C37—H37 107.7
C8—C13—H13 120.3 C37—C38—C39 110.4 (2)
N1—C14—C11 123.32 (16) C37—C38—H38A 109.6
N1—C14—H14 118.3 C39—C38—H38A 109.6
C11—C14—H14 118.3 C37—C38—H38B 109.6
N3—C15—N2 117.35 (15) C39—C38—H38B 109.6
N3—C15—S1 123.54 (13) H38A—C38—H38B 108.1
N2—C15—S1 119.07 (13) C38—C39—C40 110.8 (3)
N3—C16—C21 111.38 (15) C38—C39—H39A 109.5
N3—C16—C17 109.39 (14) C40—C39—H39A 109.5
C21—C16—C17 111.35 (16) C38—C39—H39B 109.5
N3—C16—H16 108.2 C40—C39—H39B 109.5
C21—C16—H16 108.2 H39A—C39—H39B 108.1
C17—C16—H16 108.2 C41—C40—C39 110.5 (2)
C16—C17—C18 110.61 (16) C41—C40—H40A 109.5
C16—C17—H17A 109.5 C39—C40—H40A 109.5
C18—C17—H17A 109.5 C41—C40—H40B 109.5
C16—C17—H17B 109.5 C39—C40—H40B 109.5
C18—C17—H17B 109.5 H40A—C40—H40B 108.1
H17A—C17—H17B 108.1 C40—C41—C42 111.9 (3)
C19—C18—C17 111.81 (19) C40—C41—H41A 109.2
C19—C18—H18A 109.3 C42—C41—H41A 109.2
C17—C18—H18A 109.3 C40—C41—H41B 109.2
C19—C18—H18B 109.3 C42—C41—H41B 109.2
C17—C18—H18B 109.3 H41A—C41—H41B 107.9
H18A—C18—H18B 107.9 C37—C42—C41 110.5 (2)
C18—C19—C20 111.37 (17) C37—C42—H42A 109.5
C18—C19—H19A 109.4 C41—C42—H42A 109.5
C20—C19—H19A 109.4 C37—C42—H42B 109.5
C18—C19—H19B 109.4 C41—C42—H42B 109.5
C20—C19—H19B 109.4 H42A—C42—H42B 108.1
H19A—C19—H19B 108.0 C44—C43—H43A 109.5
C19—C20—C21 111.10 (18) C44—C43—H43B 109.5
C19—C20—H20A 109.4 H43A—C43—H43B 109.5
C21—C20—H20A 109.4 C44—C43—H43C 109.5
C19—C20—H20B 109.4 H43A—C43—H43C 109.5
C21—C20—H20B 109.4 H43B—C43—H43C 109.5
H20A—C20—H20B 108.0 N7—C44—C43 177.9 (6)
C16—C21—C20 110.36 (17)
C14—N1—N2—C15 −177.55 (17) C19—C20—C21—C16 −56.4 (2)
C35—N4—N5—C36 175.50 (18) C27—C22—C23—C24 1.0 (5)
C6—C1—C2—C3 −1.8 (4) C22—C23—C24—C25 −1.9 (5)
C1—C2—C3—C4 1.1 (4) C23—C24—C25—C26 0.8 (4)
C2—C3—C4—C5 0.0 (5) C24—C25—C26—C27 1.4 (4)
C3—C4—C5—C6 −0.3 (5) C25—C26—C27—C22 −2.3 (4)
C4—C5—C6—C1 −0.3 (4) C25—C26—C27—C28 178.0 (2)
C4—C5—C6—C7 178.2 (3) C23—C22—C27—C26 1.1 (4)
C2—C1—C6—C5 1.3 (4) C23—C22—C27—C28 −179.1 (3)
C2—C1—C6—C7 −177.2 (2) C29—O3—C28—C27 167.25 (18)
C8—O1—C7—C6 −166.00 (18) C26—C27—C28—O3 88.5 (3)
C5—C6—C7—O1 97.6 (3) C22—C27—C28—O3 −91.3 (3)
C1—C6—C7—O1 −83.9 (3) C28—O3—C29—C34 2.6 (3)
C7—O1—C8—C13 175.50 (19) C28—O3—C29—C30 −176.06 (19)
C7—O1—C8—C9 −2.8 (3) O3—C29—C30—C31 176.84 (19)
O1—C8—C9—C10 175.28 (18) C34—C29—C30—C31 −1.9 (3)
C13—C8—C9—C10 −3.0 (3) C29—C30—C31—C32 −0.6 (3)
C8—C9—C10—O2 −178.48 (17) C30—C31—C32—C33 2.1 (3)
C8—C9—C10—C11 2.0 (3) C30—C31—C32—C35 −178.45 (19)
O2—C10—C11—C12 −179.23 (17) C31—C32—C33—O4 178.46 (19)
C9—C10—C11—C12 0.3 (3) C35—C32—C33—O4 −1.0 (3)
O2—C10—C11—C14 1.2 (3) C31—C32—C33—C34 −1.3 (3)
C9—C10—C11—C14 −179.29 (17) C35—C32—C33—C34 179.32 (18)
C10—C11—C12—C13 −1.7 (3) O3—C29—C34—C33 −175.91 (18)
C14—C11—C12—C13 177.95 (18) C30—C29—C34—C33 2.7 (3)
C11—C12—C13—C8 0.7 (3) O4—C33—C34—C29 179.20 (18)
O1—C8—C13—C12 −176.74 (17) C32—C33—C34—C29 −1.1 (3)
C9—C8—C13—C12 1.7 (3) N5—N4—C35—C32 −178.66 (17)
N2—N1—C14—C11 177.59 (16) C31—C32—C35—N4 175.26 (19)
C10—C11—C14—N1 3.0 (3) C33—C32—C35—N4 −5.3 (3)
C12—C11—C14—N1 −176.58 (17) C37—N6—C36—N5 −179.92 (19)
C16—N3—C15—N2 179.03 (16) C37—N6—C36—S2 −1.2 (3)
C16—N3—C15—S1 1.3 (3) N4—N5—C36—N6 5.2 (3)
N1—N2—C15—N3 −6.0 (3) N4—N5—C36—S2 −173.54 (14)
N1—N2—C15—S1 171.78 (13) C36—N6—C37—C38 −84.5 (3)
C15—N3—C16—C21 84.1 (2) C36—N6—C37—C42 150.4 (2)
C15—N3—C16—C17 −152.42 (18) N6—C37—C38—C39 179.7 (2)
N3—C16—C17—C18 −179.61 (17) C42—C37—C38—C39 −56.6 (3)
C21—C16—C17—C18 −56.1 (2) C37—C38—C39—C40 56.6 (3)
C16—C17—C18—C19 54.8 (2) C38—C39—C40—C41 −56.6 (3)
C17—C18—C19—C20 −54.8 (3) C39—C40—C41—C42 55.7 (3)
C18—C19—C20—C21 55.5 (3) N6—C37—C42—C41 179.9 (2)
N3—C16—C21—C20 179.42 (17) C38—C37—C42—C41 55.1 (3)
C17—C16—C21—C20 57.0 (2) C40—C41—C42—C37 −54.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N6—H6···N4 0.88 (1) 2.21 (2) 2.655 (2) 111 (2)
N5—H5′···S2i 0.88 (1) 2.48 (1) 3.3495 (17) 173 (2)
N2—H2′···S1ii 0.87 (1) 2.44 (1) 3.3047 (16) 171 (2)
O2—H2A···N1 0.84 (1) 1.96 (2) 2.696 (2) 146 (3)
O4—H4′···N4 0.84 (1) 1.94 (2) 2.680 (2) 146 (2)
C12—H12···Cg1iii 0.93 2.95 3.811 (2) 154
C20—H20B···Cg2iv 0.96 2.87 3.715 (2) 146
C31—H31···Cg4v 0.93 2.84 3.714 (2) 157

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x−1, −y+1, −z; (iii) −x+1, −y+2, −z; (iv) x−1, y−1, z; (v) −x, −y+2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BV2235).

References

  1. Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Jacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836–o837. [DOI] [PMC free article] [PubMed]
  5. Joseph, M., Suni, V., Kurup, M. R. P., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069–3080.
  6. Kumar, S. L. A., Kumar, M. S., Sreeja, P. B. & Sreekanth, A. (2013). Spectrochim. Acta Part A, 113, 123–129. [DOI] [PubMed]
  7. Seena, E. B., BessyRaj, B. N., Kurup, M. R. P. & Suresh, E. (2006). J. Chem. Crystallogr. 36, 189–193.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sreekanth, A., Fun, H.-K. & Kurup, M. R. P. (2004). Inorg. Chem Commun 7, 1250–1253.
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) Global, I. DOI: 10.1107/S1600536814017905/bv2235sup1.cif

e-70-0o987-sup1.cif (45KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017905/bv2235Isup2.hkl

e-70-0o987-Isup2.hkl (452.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814017905/bv2235Isup3.cml

ORTEP E N . DOI: 10.1107/S1600536814017905/bv2235fig1.tif

ORTEP diagram of (E)-2-(4-benz­yloxy-2-hy­droxy­benzyl­idene)-N-cyclo­hexyl­hydrazinecarbo­thio­amide with 50% probability ellipsoids.

21 25 3 2 2 3 . DOI: 10.1107/S1600536814017905/bv2235fig2.tif

Hydrogen-bond inter­actions of the title compound, [C21H25N3O2S]·0.5C2H3N.

. DOI: 10.1107/S1600536814017905/bv2235fig3.tif

C—H⋯π inter­actions of the title compound.

a . DOI: 10.1107/S1600536814017905/bv2235fig4.tif

Packing diagram of the title compound along a axis.

CCDC reference: 1017712

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES