Abstract
In the mononuclear copper(II) title complex, [Cu(C11H16N3O)(H2O)]Br, the CuII atom is coordinated by one O and three N atoms of the Schiff base ligand that forms together with one water molecule a slightly distorted [CuN3O2] square-pyramidal polyhedron. The deviation of the CuII atom from the mean equatorial plane is 0.182 (2) Å. The equatorial plane is nearly coplanar to the aromatic ring of the ligand [angle between planes = 10.4 (1)°], and the water molecule is situated in the apical site. All coordinating atoms (except the imine nitrogen) and the bromide ion contribute to the formation of the N—H⋯Br, O—H⋯Br and O—H⋯O hydrogen bonds, which link molecules into chains along [01-1].
Keywords: crystal structure, copper(II) complex, Schiff base ligand, bromide, hydrogen bonding
Related literature
For structures isotypic with that of the title compound, see: Zhu et al. (2002 ▶, 2004 ▶); He (2003 ▶). For the direct synthesis of copper-containing coordination compounds using the salt route, see: Kovbasyuk et al. (1997 ▶); Pryma et al. (2003 ▶); Buvaylo et al. (2005 ▶); Nikitina et al. (2008 ▶); Vassilyeva et al. (1997 ▶); Makhankova et al. (2002 ▶). For the direct synthesis of polynuclear copper-containing complexes, see: Nesterova (Pryma) et al. (2004 ▶); Nesterova et al. (2005 ▶).
Experimental
Crystal data
[Cu(C11H16N3O)(H2O)]Br
M r = 367.73
Monoclinic,
a = 9.2226 (11) Å
b = 14.0333 (13) Å
c = 10.9206 (11) Å
β = 102.355 (11)°
V = 1380.7 (3) Å3
Z = 4
Mo Kα radiation
μ = 4.47 mm−1
T = 293 K
0.40 × 0.40 × 0.40 mm
Data collection
Agilent Xcalibur Sapphire3 diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011 ▶) T min = 0.268, T max = 0.268
7804 measured reflections
4004 independent reflections
2334 reflections with I > 2σ(I)
R int = 0.045
Refinement
R[F 2 > 2σ(F 2)] = 0.052
wR(F 2) = 0.097
S = 0.95
4004 reflections
163 parameters
H-atom parameters constrained
Δρmax = 0.98 e Å−3
Δρmin = −0.38 e Å−3
Data collection: CrysAlis PRO (Agilent, 2011 ▶); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2011 ▶); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009 ▶); molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814017590/rn2126sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017590/rn2126Isup2.hkl
. DOI: 10.1107/S1600536814017590/rn2126fig1.tif
Structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms with hydrogen bonds shown as dashed lines.
. DOI: 10.1107/S1600536814017590/rn2126fig2.tif
Crystal packing of the title compound with hydrogen bonds shown as dashed lines.
CCDC reference: 1017209
Additional supporting information: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O2—H2OB⋯Br1 | 0.82 | 2.51 | 3.323 (3) | 173 |
| N2—H2N⋯Br1 | 0.85 | 2.58 | 3.429 (3) | 177 |
| O2—H2OA⋯O1i | 0.82 | 1.90 | 2.712 (4) | 171 |
| N3—H3NA⋯Br1ii | 0.85 | 2.68 | 3.499 (3) | 164 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
This work was partly supported by the State Fund for Fundamental Researches of Ukraine (project 54.3/005).
supplementary crystallographic information
S1. Comment
It has been shown that the direct synthesis is an efficient method to obtain novel homo and heterometallic mono/polynuclear coordination compounds (Kovbasyuk et al., 1997; Vassilyeva et al., 1997; Makhankova et al., 2002; Pryma et al., 2003; Nesterova (Pryma) et al., 2004; Nesterova et al., 2005; Buvaylo et al., 2005; Nikitina et al., 2008). The title compound, [Cu(C11H18N3O2)(H2O)]Br, was obtained unintentionally as the product of an attempted synthesis of a Cu/ Mn heterometallic complex using zerovalent copper and manganese powders, ammonium bromide, salicylic aldehyde and diethylenetriamine in dimethylformamide on air.
As shown in Fig. 1, the CuII atom has a slightly distorted square-pyramidal geometry formed by one oxygen and three nitrogen atoms of the Schiff base ligand as well one oxygen atom of the coordinated water molecule. The deviation of the copper atom from the mean equatorial plane is 0.182 (2) Å. The range of Cu–N and Cu–O bond distances in the equatorial plane is 1.918 (3) - 2.018 (3) Å, while the Cu–O axial distance is 2.333 (2) Å. These data are in a good agreement with literature values (Zhu et al.,2002, 2004; He et al., 2003). The equatorial plane is nearly coplanar to the aromatic ring of the ligand [angle between planes is 10.4 (1)°].
In the crystal, OH···O hydrogen bonds form molecular dimers. OH···Br and NH···Br hydrogen bonds link the dimers into chains along the [011] crystallographic direction (See Table containing Hydrogen-bond geometry and Fig.2).
S2. Experimental
The title compound was synthesized by addition of manganese powder 0.055 g (1 mmol), copper powder 0.06 g (1 mmol) and NH4Br 0.392 g (4 mmol) to the previously prepared Schiff base ligand solution [mixture of salicylic aldehyde 0.21 ml (2 mmol) and diethylenetriamine 0.108 ml (1 mmol) in dimethylformamide (10 ml) which was stirred about 15 min at 323–333 K until the mixture turned yellow]. The total reaction mixture was stirred magnetically for 4 h until the complete dissolution of manganese and copper powders was observed. Dark green crystals that precipitated after 1 day were collected by filtration and dried in air.
S3. Refinement
Structure was solved by direct method and refined against F2 with anisotropic refinement for all non-hydrogen atoms. All H atoms were placed in idealized positions (C–H = 0.93 – 0.97 Å, O–H = 0.82 Å, N–H 0.85 Å) and constrained to ride on their parent atoms, with Uiso = 1.2Ueq (except Uiso = 1.5Ueq for water).
Figures
Fig. 1.

Structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms with hydrogen bonds shown as dashed lines.
Fig. 2.
Crystal packing of the title compound with hydrogen bonds shown as dashed lines.
Crystal data
| [Cu(C11H16N3O)(H2O)]Br | F(000) = 740 |
| Mr = 367.73 | Dx = 1.769 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 1502 reflections |
| a = 9.2226 (11) Å | θ = 2.9–32.2° |
| b = 14.0333 (13) Å | µ = 4.47 mm−1 |
| c = 10.9206 (11) Å | T = 293 K |
| β = 102.355 (11)° | Block, green |
| V = 1380.7 (3) Å3 | 0.40 × 0.40 × 0.40 mm |
| Z = 4 |
Data collection
| Agilent Xcalibur Sapphire3 diffractometer | 4004 independent reflections |
| Radiation source: Enhance (Mo) X-ray Source | 2334 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.045 |
| Detector resolution: 16.1827 pixels mm-1 | θmax = 30.0°, θmin = 2.9° |
| ω scans | h = −7→12 |
| Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −16→19 |
| Tmin = 0.268, Tmax = 0.268 | l = −15→12 |
| 7804 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.097 | H-atom parameters constrained |
| S = 0.95 | w = 1/[σ2(Fo2) + (0.0308P)2] where P = (Fo2 + 2Fc2)/3 |
| 4004 reflections | (Δ/σ)max = 0.001 |
| 163 parameters | Δρmax = 0.98 e Å−3 |
| 0 restraints | Δρmin = −0.38 e Å−3 |
Special details
| Experimental. Absorption correction: CrysAlis PRO (Agilent, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cu1 | 0.67287 (6) | 0.58118 (3) | 0.65849 (4) | 0.03317 (14) | |
| Br1 | 0.70894 (6) | 0.32849 (3) | 0.91251 (4) | 0.04828 (15) | |
| O1 | 0.6489 (3) | 0.61004 (19) | 0.4836 (2) | 0.0412 (7) | |
| O2 | 0.6414 (3) | 0.41770 (17) | 0.6240 (2) | 0.0401 (7) | |
| H2OA | 0.5548 | 0.4032 | 0.5949 | 0.060* | |
| H2OB | 0.6614 | 0.3912 | 0.6920 | 0.060* | |
| N1 | 0.8883 (4) | 0.5872 (2) | 0.6891 (3) | 0.0346 (8) | |
| N2 | 0.7031 (4) | 0.5675 (2) | 0.8462 (3) | 0.0387 (8) | |
| H2N | 0.7059 | 0.5079 | 0.8604 | 0.046* | |
| N3 | 0.4595 (4) | 0.6068 (2) | 0.6646 (3) | 0.0399 (8) | |
| H3NA | 0.4358 | 0.6632 | 0.6411 | 0.048* | |
| H3NB | 0.4087 | 0.5679 | 0.6132 | 0.048* | |
| C1 | 0.9071 (4) | 0.6273 (2) | 0.4771 (3) | 0.0302 (8) | |
| C2 | 0.7532 (5) | 0.6287 (2) | 0.4219 (3) | 0.0313 (9) | |
| C3 | 0.7118 (5) | 0.6529 (2) | 0.2942 (3) | 0.0349 (9) | |
| H3 | 0.6117 | 0.6542 | 0.2556 | 0.042* | |
| C4 | 0.8153 (5) | 0.6747 (3) | 0.2252 (4) | 0.0424 (11) | |
| H4 | 0.7837 | 0.6912 | 0.1412 | 0.051* | |
| C5 | 0.9668 (5) | 0.6727 (3) | 0.2784 (4) | 0.0463 (11) | |
| H5 | 1.0368 | 0.6864 | 0.2309 | 0.056* | |
| C6 | 1.0092 (5) | 0.6498 (3) | 0.4026 (4) | 0.0419 (10) | |
| H6 | 1.1100 | 0.6491 | 0.4394 | 0.050* | |
| C7 | 0.9648 (5) | 0.6070 (2) | 0.6085 (4) | 0.0366 (9) | |
| H7 | 1.0673 | 0.6085 | 0.6364 | 0.044* | |
| C8 | 0.9587 (5) | 0.5675 (3) | 0.8202 (4) | 0.0467 (11) | |
| H8A | 1.0528 | 0.6007 | 0.8429 | 0.056* | |
| H8B | 0.9771 | 0.4997 | 0.8320 | 0.056* | |
| C9 | 0.8548 (5) | 0.6011 (3) | 0.9012 (4) | 0.0411 (10) | |
| H9A | 0.8868 | 0.5762 | 0.9855 | 0.049* | |
| H9B | 0.8561 | 0.6702 | 0.9058 | 0.049* | |
| C10 | 0.5790 (5) | 0.6137 (3) | 0.8863 (4) | 0.0440 (11) | |
| H10A | 0.5935 | 0.6822 | 0.8899 | 0.053* | |
| H10B | 0.5728 | 0.5915 | 0.9691 | 0.053* | |
| C11 | 0.4385 (5) | 0.5896 (3) | 0.7935 (4) | 0.0492 (11) | |
| H11A | 0.4132 | 0.5233 | 0.8027 | 0.059* | |
| H11B | 0.3576 | 0.6287 | 0.8092 | 0.059* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu1 | 0.0316 (3) | 0.0396 (3) | 0.0258 (2) | 0.0004 (2) | 0.00050 (19) | 0.0017 (2) |
| Br1 | 0.0532 (3) | 0.0425 (2) | 0.0456 (3) | −0.0024 (2) | 0.0028 (2) | 0.0084 (2) |
| O1 | 0.0259 (16) | 0.0651 (18) | 0.0285 (14) | −0.0052 (14) | −0.0029 (12) | 0.0099 (13) |
| O2 | 0.0341 (17) | 0.0430 (15) | 0.0378 (15) | −0.0046 (13) | −0.0039 (12) | −0.0007 (13) |
| N1 | 0.032 (2) | 0.0361 (17) | 0.0306 (17) | 0.0052 (15) | −0.0046 (14) | −0.0041 (15) |
| N2 | 0.053 (2) | 0.0278 (16) | 0.0327 (18) | −0.0054 (16) | 0.0025 (16) | 0.0013 (14) |
| N3 | 0.037 (2) | 0.0425 (18) | 0.0396 (19) | −0.0004 (16) | 0.0076 (16) | −0.0011 (15) |
| C1 | 0.027 (2) | 0.0261 (17) | 0.036 (2) | 0.0005 (17) | 0.0039 (17) | −0.0055 (16) |
| C2 | 0.033 (2) | 0.0300 (19) | 0.031 (2) | −0.0043 (18) | 0.0052 (17) | −0.0009 (16) |
| C3 | 0.035 (2) | 0.037 (2) | 0.029 (2) | −0.0076 (18) | 0.0001 (17) | −0.0034 (16) |
| C4 | 0.058 (3) | 0.036 (2) | 0.035 (2) | −0.004 (2) | 0.014 (2) | −0.0020 (18) |
| C5 | 0.047 (3) | 0.047 (2) | 0.052 (3) | 0.002 (2) | 0.026 (2) | −0.012 (2) |
| C6 | 0.032 (3) | 0.040 (2) | 0.055 (3) | −0.0030 (19) | 0.012 (2) | −0.010 (2) |
| C7 | 0.024 (2) | 0.036 (2) | 0.046 (2) | 0.0033 (17) | −0.0014 (19) | −0.0055 (18) |
| C8 | 0.047 (3) | 0.052 (3) | 0.032 (2) | 0.014 (2) | −0.0111 (19) | 0.0004 (19) |
| C9 | 0.047 (3) | 0.043 (2) | 0.028 (2) | 0.003 (2) | −0.0043 (19) | 0.0004 (18) |
| C10 | 0.054 (3) | 0.045 (2) | 0.036 (2) | −0.002 (2) | 0.015 (2) | −0.0047 (18) |
| C11 | 0.048 (3) | 0.059 (3) | 0.043 (3) | −0.008 (2) | 0.016 (2) | −0.005 (2) |
Geometric parameters (Å, º)
| Cu1—O1 | 1.919 (3) | C2—C3 | 1.407 (5) |
| Cu1—N1 | 1.945 (3) | C3—C4 | 1.371 (5) |
| Cu1—N3 | 2.016 (3) | C3—H3 | 0.9300 |
| Cu1—N2 | 2.018 (3) | C4—C5 | 1.395 (6) |
| Cu1—O2 | 2.333 (2) | C4—H4 | 0.9300 |
| O1—C2 | 1.313 (4) | C5—C6 | 1.367 (6) |
| O2—H2OA | 0.8197 | C5—H5 | 0.9300 |
| O2—H2OB | 0.8159 | C6—H6 | 0.9300 |
| N1—C7 | 1.271 (5) | C7—H7 | 0.9300 |
| N1—C8 | 1.466 (5) | C8—C9 | 1.512 (6) |
| N2—C10 | 1.461 (5) | C8—H8A | 0.9700 |
| N2—C9 | 1.477 (5) | C8—H8B | 0.9700 |
| N2—H2N | 0.8495 | C9—H9A | 0.9700 |
| N3—C11 | 1.481 (5) | C9—H9B | 0.9700 |
| N3—H3NA | 0.8455 | C10—C11 | 1.503 (6) |
| N3—H3NB | 0.8494 | C10—H10A | 0.9700 |
| C1—C6 | 1.407 (5) | C10—H10B | 0.9700 |
| C1—C2 | 1.418 (5) | C11—H11A | 0.9700 |
| C1—C7 | 1.447 (5) | C11—H11B | 0.9700 |
| O1—Cu1—N1 | 93.31 (12) | C2—C3—H3 | 119.1 |
| O1—Cu1—N3 | 95.17 (12) | C3—C4—C5 | 121.3 (4) |
| N1—Cu1—N3 | 162.80 (13) | C3—C4—H4 | 119.3 |
| O1—Cu1—N2 | 173.18 (12) | C5—C4—H4 | 119.3 |
| N1—Cu1—N2 | 85.17 (14) | C6—C5—C4 | 117.8 (4) |
| N3—Cu1—N2 | 84.65 (14) | C6—C5—H5 | 121.1 |
| O1—Cu1—O2 | 93.61 (10) | C4—C5—H5 | 121.1 |
| N1—Cu1—O2 | 99.09 (11) | C5—C6—C1 | 122.8 (4) |
| N3—Cu1—O2 | 95.29 (11) | C5—C6—H6 | 118.6 |
| N2—Cu1—O2 | 93.20 (10) | C1—C6—H6 | 118.6 |
| C2—O1—Cu1 | 127.7 (2) | N1—C7—C1 | 126.1 (4) |
| Cu1—O2—H2OA | 112.6 | N1—C7—H7 | 117.0 |
| Cu1—O2—H2OB | 107.8 | C1—C7—H7 | 117.0 |
| H2OA—O2—H2OB | 104.6 | N1—C8—C9 | 108.0 (3) |
| C7—N1—C8 | 121.5 (4) | N1—C8—H8A | 110.1 |
| C7—N1—Cu1 | 126.0 (3) | C9—C8—H8A | 110.1 |
| C8—N1—Cu1 | 112.5 (3) | N1—C8—H8B | 110.1 |
| C10—N2—C9 | 118.1 (3) | C9—C8—H8B | 110.1 |
| C10—N2—Cu1 | 108.4 (2) | H8A—C8—H8B | 108.4 |
| C9—N2—Cu1 | 107.2 (2) | N2—C9—C8 | 109.0 (3) |
| C10—N2—H2N | 112.2 | N2—C9—H9A | 109.9 |
| C9—N2—H2N | 104.5 | C8—C9—H9A | 109.9 |
| Cu1—N2—H2N | 105.7 | N2—C9—H9B | 109.9 |
| C11—N3—Cu1 | 109.3 (3) | C8—C9—H9B | 109.9 |
| C11—N3—H3NA | 111.3 | H9A—C9—H9B | 108.3 |
| Cu1—N3—H3NA | 110.3 | N2—C10—C11 | 108.4 (3) |
| C11—N3—H3NB | 111.0 | N2—C10—H10A | 110.0 |
| Cu1—N3—H3NB | 105.5 | C11—C10—H10A | 110.0 |
| H3NA—N3—H3NB | 109.3 | N2—C10—H10B | 110.0 |
| C6—C1—C2 | 119.0 (4) | C11—C10—H10B | 110.0 |
| C6—C1—C7 | 117.9 (4) | H10A—C10—H10B | 108.4 |
| C2—C1—C7 | 123.1 (4) | N3—C11—C10 | 109.5 (4) |
| O1—C2—C3 | 118.9 (4) | N3—C11—H11A | 109.8 |
| O1—C2—C1 | 123.7 (3) | C10—C11—H11A | 109.8 |
| C3—C2—C1 | 117.3 (4) | N3—C11—H11B | 109.8 |
| C4—C3—C2 | 121.7 (4) | C10—C11—H11B | 109.8 |
| C4—C3—H3 | 119.1 | H11A—C11—H11B | 108.2 |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O2—H2OB···Br1 | 0.82 | 2.51 | 3.323 (3) | 173 |
| N2—H2N···Br1 | 0.85 | 2.58 | 3.429 (3) | 177 |
| O2—H2OA···O1i | 0.82 | 1.90 | 2.712 (4) | 171 |
| N3—H3NA···Br1ii | 0.85 | 2.68 | 3.499 (3) | 164 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y+1/2, −z+3/2.
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: RN2126).
References
- Agilent (2011). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
- Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978. [DOI] [PubMed]
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- He, G.-F. (2003). Chin. J. Spectrosc. Lab. 5, 647–649.
- Kovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161–163.
- Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253–4259.
- Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425–1434.
- Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454.
- Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430.
- Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Vassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263–266.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Zhu, H.-L., Li, S.-Y., He, W.-M. & Yu, K.-B. (2002). Z. Kristallogr. New Cryst. Struct. 217, 599–600.
- Zhu, H.-L., Li, S.-Y., Wang, Zh.-D. & Yang, F. (2004). J. Chem. Crystallogr. 34, 203–206.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814017590/rn2126sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017590/rn2126Isup2.hkl
. DOI: 10.1107/S1600536814017590/rn2126fig1.tif
Structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms with hydrogen bonds shown as dashed lines.
. DOI: 10.1107/S1600536814017590/rn2126fig2.tif
Crystal packing of the title compound with hydrogen bonds shown as dashed lines.
CCDC reference: 1017209
Additional supporting information: crystallographic information; 3D view; checkCIF report

