Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Aug 16;70(Pt 9):m330–m331. doi: 10.1107/S1600536814017590

Crystal structure of {2-[({2-[(2-amino­eth­yl)amino]­eth­yl}imino)­meth­yl]pheno­lato}aqua­copper(II) bromide

Nataliya I Plyuta a, Julia A Rusanova a, Svitlana R Petrusenko a,*, Irina V Omelchenko b
PMCID: PMC4186199  PMID: 25309185

Abstract

In the mononuclear copper(II) title complex, [Cu(C11H16N3O)(H2O)]Br, the CuII atom is coordinated by one O and three N atoms of the Schiff base ligand that forms together with one water mol­ecule a slightly distorted [CuN3O2] square-pyramidal polyhedron. The deviation of the CuII atom from the mean equatorial plane is 0.182 (2) Å. The equatorial plane is nearly coplanar to the aromatic ring of the ligand [angle between planes = 10.4 (1)°], and the water molecule is situated in the apical site. All coordinating atoms (except the imine nitro­gen) and the bromide ion contribute to the formation of the N—H⋯Br, O—H⋯Br and O—H⋯O hydrogen bonds, which link mol­ecules into chains along [01-1].

Keywords: crystal structure, copper(II) complex, Schiff base ligand, bromide, hydrogen bonding

Related literature  

For structures isotypic with that of the title compound, see: Zhu et al. (2002, 2004); He (2003). For the direct synthesis of copper-containing coordination compounds using the salt route, see: Kovbasyuk et al. (1997); Pryma et al. (2003); Buvaylo et al. (2005); Nikitina et al. (2008); Vassilyeva et al. (1997); Makhankova et al. (2002). For the direct synthesis of polynuclear copper-containing complexes, see: Nesterova (Pryma) et al. (2004); Nesterova et al. (2005).graphic file with name e-70-0m330-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C11H16N3O)(H2O)]Br

  • M r = 367.73

  • Monoclinic, Inline graphic

  • a = 9.2226 (11) Å

  • b = 14.0333 (13) Å

  • c = 10.9206 (11) Å

  • β = 102.355 (11)°

  • V = 1380.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.47 mm−1

  • T = 293 K

  • 0.40 × 0.40 × 0.40 mm

Data collection  

  • Agilent Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.268, T max = 0.268

  • 7804 measured reflections

  • 4004 independent reflections

  • 2334 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.097

  • S = 0.95

  • 4004 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009); molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814017590/rn2126sup1.cif

e-70-0m330-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017590/rn2126Isup2.hkl

e-70-0m330-Isup2.hkl (204.2KB, hkl)

. DOI: 10.1107/S1600536814017590/rn2126fig1.tif

Structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms with hydrogen bonds shown as dashed lines.

. DOI: 10.1107/S1600536814017590/rn2126fig2.tif

Crystal packing of the title compound with hydrogen bonds shown as dashed lines.

CCDC reference: 1017209

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2OB⋯Br1 0.82 2.51 3.323 (3) 173
N2—H2N⋯Br1 0.85 2.58 3.429 (3) 177
O2—H2OA⋯O1i 0.82 1.90 2.712 (4) 171
N3—H3NA⋯Br1ii 0.85 2.68 3.499 (3) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was partly supported by the State Fund for Fundamental Researches of Ukraine (project 54.3/005).

supplementary crystallographic information

S1. Comment

It has been shown that the direct synthesis is an efficient method to obtain novel homo and heterometallic mono/polynuclear coordination compounds (Kovbasyuk et al., 1997; Vassilyeva et al., 1997; Makhankova et al., 2002; Pryma et al., 2003; Nesterova (Pryma) et al., 2004; Nesterova et al., 2005; Buvaylo et al., 2005; Nikitina et al., 2008). The title compound, [Cu(C11H18N3O2)(H2O)]Br, was obtained unintentionally as the product of an attempted synthesis of a Cu/ Mn heterometallic complex using zerovalent copper and manganese powders, ammonium bromide, salicylic aldehyde and diethylenetriamine in dimethylformamide on air.

As shown in Fig. 1, the CuII atom has a slightly distorted square-pyramidal geometry formed by one oxygen and three nitrogen atoms of the Schiff base ligand as well one oxygen atom of the coordinated water molecule. The deviation of the copper atom from the mean equatorial plane is 0.182 (2) Å. The range of Cu–N and Cu–O bond distances in the equatorial plane is 1.918 (3) - 2.018 (3) Å, while the Cu–O axial distance is 2.333 (2) Å. These data are in a good agreement with literature values (Zhu et al.,2002, 2004; He et al., 2003). The equatorial plane is nearly coplanar to the aromatic ring of the ligand [angle between planes is 10.4 (1)°].

In the crystal, OH···O hydrogen bonds form molecular dimers. OH···Br and NH···Br hydrogen bonds link the dimers into chains along the [011] crystallographic direction (See Table containing Hydrogen-bond geometry and Fig.2).

S2. Experimental

The title compound was synthesized by addition of manganese powder 0.055 g (1 mmol), copper powder 0.06 g (1 mmol) and NH4Br 0.392 g (4 mmol) to the previously prepared Schiff base ligand solution [mixture of salicylic aldehyde 0.21 ml (2 mmol) and diethylenetriamine 0.108 ml (1 mmol) in dimethylformamide (10 ml) which was stirred about 15 min at 323–333 K until the mixture turned yellow]. The total reaction mixture was stirred magnetically for 4 h until the complete dissolution of manganese and copper powders was observed. Dark green crystals that precipitated after 1 day were collected by filtration and dried in air.

S3. Refinement

Structure was solved by direct method and refined against F2 with anisotropic refinement for all non-hydrogen atoms. All H atoms were placed in idealized positions (C–H = 0.93 – 0.97 Å, O–H = 0.82 Å, N–H 0.85 Å) and constrained to ride on their parent atoms, with Uiso = 1.2Ueq (except Uiso = 1.5Ueq for water).

Figures

Fig. 1.

Fig. 1.

Structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms with hydrogen bonds shown as dashed lines.

Fig. 2.

Fig. 2.

Crystal packing of the title compound with hydrogen bonds shown as dashed lines.

Crystal data

[Cu(C11H16N3O)(H2O)]Br F(000) = 740
Mr = 367.73 Dx = 1.769 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1502 reflections
a = 9.2226 (11) Å θ = 2.9–32.2°
b = 14.0333 (13) Å µ = 4.47 mm1
c = 10.9206 (11) Å T = 293 K
β = 102.355 (11)° Block, green
V = 1380.7 (3) Å3 0.40 × 0.40 × 0.40 mm
Z = 4

Data collection

Agilent Xcalibur Sapphire3 diffractometer 4004 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2334 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.045
Detector resolution: 16.1827 pixels mm-1 θmax = 30.0°, θmin = 2.9°
ω scans h = −7→12
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −16→19
Tmin = 0.268, Tmax = 0.268 l = −15→12
7804 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0308P)2] where P = (Fo2 + 2Fc2)/3
4004 reflections (Δ/σ)max = 0.001
163 parameters Δρmax = 0.98 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Experimental. Absorption correction: CrysAlis PRO (Agilent, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.67287 (6) 0.58118 (3) 0.65849 (4) 0.03317 (14)
Br1 0.70894 (6) 0.32849 (3) 0.91251 (4) 0.04828 (15)
O1 0.6489 (3) 0.61004 (19) 0.4836 (2) 0.0412 (7)
O2 0.6414 (3) 0.41770 (17) 0.6240 (2) 0.0401 (7)
H2OA 0.5548 0.4032 0.5949 0.060*
H2OB 0.6614 0.3912 0.6920 0.060*
N1 0.8883 (4) 0.5872 (2) 0.6891 (3) 0.0346 (8)
N2 0.7031 (4) 0.5675 (2) 0.8462 (3) 0.0387 (8)
H2N 0.7059 0.5079 0.8604 0.046*
N3 0.4595 (4) 0.6068 (2) 0.6646 (3) 0.0399 (8)
H3NA 0.4358 0.6632 0.6411 0.048*
H3NB 0.4087 0.5679 0.6132 0.048*
C1 0.9071 (4) 0.6273 (2) 0.4771 (3) 0.0302 (8)
C2 0.7532 (5) 0.6287 (2) 0.4219 (3) 0.0313 (9)
C3 0.7118 (5) 0.6529 (2) 0.2942 (3) 0.0349 (9)
H3 0.6117 0.6542 0.2556 0.042*
C4 0.8153 (5) 0.6747 (3) 0.2252 (4) 0.0424 (11)
H4 0.7837 0.6912 0.1412 0.051*
C5 0.9668 (5) 0.6727 (3) 0.2784 (4) 0.0463 (11)
H5 1.0368 0.6864 0.2309 0.056*
C6 1.0092 (5) 0.6498 (3) 0.4026 (4) 0.0419 (10)
H6 1.1100 0.6491 0.4394 0.050*
C7 0.9648 (5) 0.6070 (2) 0.6085 (4) 0.0366 (9)
H7 1.0673 0.6085 0.6364 0.044*
C8 0.9587 (5) 0.5675 (3) 0.8202 (4) 0.0467 (11)
H8A 1.0528 0.6007 0.8429 0.056*
H8B 0.9771 0.4997 0.8320 0.056*
C9 0.8548 (5) 0.6011 (3) 0.9012 (4) 0.0411 (10)
H9A 0.8868 0.5762 0.9855 0.049*
H9B 0.8561 0.6702 0.9058 0.049*
C10 0.5790 (5) 0.6137 (3) 0.8863 (4) 0.0440 (11)
H10A 0.5935 0.6822 0.8899 0.053*
H10B 0.5728 0.5915 0.9691 0.053*
C11 0.4385 (5) 0.5896 (3) 0.7935 (4) 0.0492 (11)
H11A 0.4132 0.5233 0.8027 0.059*
H11B 0.3576 0.6287 0.8092 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0316 (3) 0.0396 (3) 0.0258 (2) 0.0004 (2) 0.00050 (19) 0.0017 (2)
Br1 0.0532 (3) 0.0425 (2) 0.0456 (3) −0.0024 (2) 0.0028 (2) 0.0084 (2)
O1 0.0259 (16) 0.0651 (18) 0.0285 (14) −0.0052 (14) −0.0029 (12) 0.0099 (13)
O2 0.0341 (17) 0.0430 (15) 0.0378 (15) −0.0046 (13) −0.0039 (12) −0.0007 (13)
N1 0.032 (2) 0.0361 (17) 0.0306 (17) 0.0052 (15) −0.0046 (14) −0.0041 (15)
N2 0.053 (2) 0.0278 (16) 0.0327 (18) −0.0054 (16) 0.0025 (16) 0.0013 (14)
N3 0.037 (2) 0.0425 (18) 0.0396 (19) −0.0004 (16) 0.0076 (16) −0.0011 (15)
C1 0.027 (2) 0.0261 (17) 0.036 (2) 0.0005 (17) 0.0039 (17) −0.0055 (16)
C2 0.033 (2) 0.0300 (19) 0.031 (2) −0.0043 (18) 0.0052 (17) −0.0009 (16)
C3 0.035 (2) 0.037 (2) 0.029 (2) −0.0076 (18) 0.0001 (17) −0.0034 (16)
C4 0.058 (3) 0.036 (2) 0.035 (2) −0.004 (2) 0.014 (2) −0.0020 (18)
C5 0.047 (3) 0.047 (2) 0.052 (3) 0.002 (2) 0.026 (2) −0.012 (2)
C6 0.032 (3) 0.040 (2) 0.055 (3) −0.0030 (19) 0.012 (2) −0.010 (2)
C7 0.024 (2) 0.036 (2) 0.046 (2) 0.0033 (17) −0.0014 (19) −0.0055 (18)
C8 0.047 (3) 0.052 (3) 0.032 (2) 0.014 (2) −0.0111 (19) 0.0004 (19)
C9 0.047 (3) 0.043 (2) 0.028 (2) 0.003 (2) −0.0043 (19) 0.0004 (18)
C10 0.054 (3) 0.045 (2) 0.036 (2) −0.002 (2) 0.015 (2) −0.0047 (18)
C11 0.048 (3) 0.059 (3) 0.043 (3) −0.008 (2) 0.016 (2) −0.005 (2)

Geometric parameters (Å, º)

Cu1—O1 1.919 (3) C2—C3 1.407 (5)
Cu1—N1 1.945 (3) C3—C4 1.371 (5)
Cu1—N3 2.016 (3) C3—H3 0.9300
Cu1—N2 2.018 (3) C4—C5 1.395 (6)
Cu1—O2 2.333 (2) C4—H4 0.9300
O1—C2 1.313 (4) C5—C6 1.367 (6)
O2—H2OA 0.8197 C5—H5 0.9300
O2—H2OB 0.8159 C6—H6 0.9300
N1—C7 1.271 (5) C7—H7 0.9300
N1—C8 1.466 (5) C8—C9 1.512 (6)
N2—C10 1.461 (5) C8—H8A 0.9700
N2—C9 1.477 (5) C8—H8B 0.9700
N2—H2N 0.8495 C9—H9A 0.9700
N3—C11 1.481 (5) C9—H9B 0.9700
N3—H3NA 0.8455 C10—C11 1.503 (6)
N3—H3NB 0.8494 C10—H10A 0.9700
C1—C6 1.407 (5) C10—H10B 0.9700
C1—C2 1.418 (5) C11—H11A 0.9700
C1—C7 1.447 (5) C11—H11B 0.9700
O1—Cu1—N1 93.31 (12) C2—C3—H3 119.1
O1—Cu1—N3 95.17 (12) C3—C4—C5 121.3 (4)
N1—Cu1—N3 162.80 (13) C3—C4—H4 119.3
O1—Cu1—N2 173.18 (12) C5—C4—H4 119.3
N1—Cu1—N2 85.17 (14) C6—C5—C4 117.8 (4)
N3—Cu1—N2 84.65 (14) C6—C5—H5 121.1
O1—Cu1—O2 93.61 (10) C4—C5—H5 121.1
N1—Cu1—O2 99.09 (11) C5—C6—C1 122.8 (4)
N3—Cu1—O2 95.29 (11) C5—C6—H6 118.6
N2—Cu1—O2 93.20 (10) C1—C6—H6 118.6
C2—O1—Cu1 127.7 (2) N1—C7—C1 126.1 (4)
Cu1—O2—H2OA 112.6 N1—C7—H7 117.0
Cu1—O2—H2OB 107.8 C1—C7—H7 117.0
H2OA—O2—H2OB 104.6 N1—C8—C9 108.0 (3)
C7—N1—C8 121.5 (4) N1—C8—H8A 110.1
C7—N1—Cu1 126.0 (3) C9—C8—H8A 110.1
C8—N1—Cu1 112.5 (3) N1—C8—H8B 110.1
C10—N2—C9 118.1 (3) C9—C8—H8B 110.1
C10—N2—Cu1 108.4 (2) H8A—C8—H8B 108.4
C9—N2—Cu1 107.2 (2) N2—C9—C8 109.0 (3)
C10—N2—H2N 112.2 N2—C9—H9A 109.9
C9—N2—H2N 104.5 C8—C9—H9A 109.9
Cu1—N2—H2N 105.7 N2—C9—H9B 109.9
C11—N3—Cu1 109.3 (3) C8—C9—H9B 109.9
C11—N3—H3NA 111.3 H9A—C9—H9B 108.3
Cu1—N3—H3NA 110.3 N2—C10—C11 108.4 (3)
C11—N3—H3NB 111.0 N2—C10—H10A 110.0
Cu1—N3—H3NB 105.5 C11—C10—H10A 110.0
H3NA—N3—H3NB 109.3 N2—C10—H10B 110.0
C6—C1—C2 119.0 (4) C11—C10—H10B 110.0
C6—C1—C7 117.9 (4) H10A—C10—H10B 108.4
C2—C1—C7 123.1 (4) N3—C11—C10 109.5 (4)
O1—C2—C3 118.9 (4) N3—C11—H11A 109.8
O1—C2—C1 123.7 (3) C10—C11—H11A 109.8
C3—C2—C1 117.3 (4) N3—C11—H11B 109.8
C4—C3—C2 121.7 (4) C10—C11—H11B 109.8
C4—C3—H3 119.1 H11A—C11—H11B 108.2

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2OB···Br1 0.82 2.51 3.323 (3) 173
N2—H2N···Br1 0.85 2.58 3.429 (3) 177
O2—H2OA···O1i 0.82 1.90 2.712 (4) 171
N3—H3NA···Br1ii 0.85 2.68 3.499 (3) 164

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y+1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: RN2126).

References

  1. Agilent (2011). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Yu., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978. [DOI] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. He, G.-F. (2003). Chin. J. Spectrosc. Lab. 5, 647–649.
  5. Kovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161–163.
  6. Makhankova, V. G., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Sorace, L. & Gatteschi, D. (2002). J. Chem. Soc. Dalton Trans. pp. 4253–4259.
  7. Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425–1434.
  8. Nesterova (Pryma), O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454.
  9. Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430.
  10. Pryma, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Shishkin, O. V. & Teplytska, T. S. (2003). Eur. J. Inorg. Chem. pp. 1426–1432.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Vassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263–266.
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  14. Zhu, H.-L., Li, S.-Y., He, W.-M. & Yu, K.-B. (2002). Z. Kristallogr. New Cryst. Struct. 217, 599–600.
  15. Zhu, H.-L., Li, S.-Y., Wang, Zh.-D. & Yang, F. (2004). J. Chem. Crystallogr. 34, 203–206.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814017590/rn2126sup1.cif

e-70-0m330-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814017590/rn2126Isup2.hkl

e-70-0m330-Isup2.hkl (204.2KB, hkl)

. DOI: 10.1107/S1600536814017590/rn2126fig1.tif

Structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms with hydrogen bonds shown as dashed lines.

. DOI: 10.1107/S1600536814017590/rn2126fig2.tif

Crystal packing of the title compound with hydrogen bonds shown as dashed lines.

CCDC reference: 1017209

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES