Skip to main content
Frontiers in Systems Neuroscience logoLink to Frontiers in Systems Neuroscience
editorial
. 2014 Oct 8;8:189. doi: 10.3389/fnsys.2014.00189

Experimental enhancement of neurphysiological function

Diana Deca 1,*, Randal A Koene 2
PMCID: PMC4189435  PMID: 25339871

Enhancing brain function entails controlling neuronal function. There are several methods available for this which led to some relevant experimental data. Deca (2011) Since methods for connectome (Briggman et al., 2011; Prevedel et al., 2014) and circuit functional analysis (Marblestone et al., 2013) are advancing rapidly (Deca, 2012), it makes sense to consider only the most convincing neurophysiological data in the context of enhancement and their future development.

Stimulation methods: electrical and optical

The Brecht lab (Houweling and Brecht, 2008) has achieved training of a biological neural network in the living animal through a single neuron leading to enhanced learning speed. Microstimulation of the monkey frontal eye fields (FEF) (Goldberg et al., 1986) and training (Ferrera and Lisberger, 1995) can induce eye fixation and use neuronal activity as a predictor for saccadic eye movements (Shadlen and Newsome, 2001). Schiller and Tehovnik mapped the neurophysiological basis of saccadic eye movements (Tehovnik and Lee, 1993) as a basis for a visual prosthetic (Schiller and Tehovnik, 2008).

Optogenetics is by now a stock neuromodulation technique. The Deisseroth lab used it to enhance neuronal direction selectivity through optical stimulation of interneurons (Lee et al., 2012). Increasing inhibition can promote learning. It was also used to modulate the astroglial activation (Perea et al., 2014) for enhancing both excitatory and inhibitory neurotransmission. Neuronal activity can also be inhibited optogenetically (Zhang et al., 2007) using halorhodopsin.

Neurofeedback

Romo et al. (2000) used microstimulation as a substitute for sensory stimulation and obtained the same results, showing that sensory input can be replaced in a network by its corresponding electrical input. Furthermore, it was shown that rhesus monkeys can control the activity of their own FEF neurons, when experimenters reinforce visual attention (neurofeedback training Schafer and Moore, 2011).

The finding that rats can press a lever in order to get drugs that interfere with their own dopaminergic system (Yokel and Wise, 1976; Wise et al., 1990) also inspired the invention of an electrode for chronic brain self-stimulation.

Neural prosthetics

The discovery of neural population coding of directional motor control signals (Georgopoulos et al., 1982, 1986), plus the discovery of stable cortical maps for motor control (Ganguly and Carmena, 2009), have enabled control of prosthetic limbs through chronic multi-site neural interfaces in non-human primates (Nicolelis, 2001; Graziano et al., 2002; Nicolelis et al., 2003; Gilja et al., 2012) and human experiments with implantable devices that enable control of a cursor, a wheel chair, a TV remote control, and a prosthetic hand by a single neuron or by an ensemble of neurons (Kennedy and Bakay, 1998; Hochberg et al., 2006; Truccolo et al., 2008; Simeral et al., 2011). There are also efforts to use signals from higher-level cognitive processing to instruct devices (Andersen et al., 2004). The FDA has approved clinical trials for cortical motor control of prosthetic arms using Utah arrays (Maynard et al., 1997).

Work from the Schreiner lab (Atencio et al., 2014) shows that an auditory implant in the thalamus can give better results than cochlear implants.

Also, a short-term memory neuroprosthetic in the rodent hippocampus enhanced performance (Berger et al., 2011). It performed real-time diagnosis and stimulation and enhanced cognitive, mnemonic processes. Furthermore, one can transfer performance-related spiking activity from one donor brain and use this pattern to stimulate another and generate the same behavior through BMBI. Deadwyler et al. (2013), Opris et al. (2001, 2013), Opris and Casanova (2014), Berger and Deadwyler made a neuroprosthetic multi-input multi-output (MIMO) model replicating CA3-to-CA3 coding functions which successfully enhanced monkeys' performance on a decision making task (Dibazar et al., 2013; Hampson et al., 2013) and recovered it under pharmacological disruption (Hampson et al., 2012). They are currently starting trials in volunteer human patients. Guggenmos et al. (2013) invented a prosthetic for restoring motor function. Circuit function was also emulated in the cerebellum (Herreros et al., 2014). Using the neuroprosthetic system, a rat underwent acquisition, retention and extinction of the eye-blink reflex even under anesthesia.

Table 1.

Summary of successful neurophysiological enhancements.

Enhanced function Method What is modulated Possible developments
Vision/Stimulus selectivity Optogenetics Interneurons Enhancing other senses and learning by inhibiting the responsible inhibitory circuits
Vision/Stimulus selectivity Optogenetics Astrocytes Speeding up network computation in response to any stimulus by activating the brain's immune response
Learning/Decision making Single neuron electrical stimulation Neuronal firing/Behavior Enhancing a desired behavioral response through electrical stimulation
Oculomotor control Neurofeedback training Neuronal firing in the FAF/thalamic Inducing long-term plasticity and learning through repetitive neurofeedback training
Hearing Auditory thalamic implant Thalamic input Activated auditory cortex at low electrical current levels
Vision/Fixation Electrical stimulation Frontal eye fields Electrically evoked saccadic eye movements
Memory Neuroprosthetic Neuronal firing/behavior Enhanced mnemonic processes through electrical stimulation
Memory Neuroprosthetic/Emulated firing patterns Neuronal firing Induced memory-related processing
Learning MIMO Substituted layer 5 neuronal input Enhanced performance in a primate decision making task
Motor skills Brain-machine-brain interface (BMBI) Bridged damaged neural pathways Promoted LTP, Restored motor function
Learning Neuroprosthetic Restored the eye-blink reflex under anesthesia with BMBI Induced learning in the cerebellum with neuroprosthetic conditioning

Toward the connectome

The goal of this paper was to present the clearest experimental evidence of neurophysiological enhancement to date, while employing a very conservative definition of enhancement.

The neural mechanisms for the enhancement effects of drugs, deep brain stimulation or transcranial current stimulation are largely unknown. Microstimulation and optogenetics provide means to control specific system components and study their contribution to a particular brain function. Neuroprosthetics, brain implants, MIMO, BMBI, and neurofeedback training do electrophysiological data acquisition, interpretation and reimplementation which, if successful, show a clear direction of causality of the neurophysiological substrate of sensing, learning, memory and decision making. These approaches provide mechanistic explanations together with clear enhancement of brain functions.

In the near future, more mechanistic/causal electrophysiological data showing enhancement in lower animals will enable further exploration of these mechanisms in primate non-human and human subjects. A significant challenge for non-invasive experimental enhancement is getting around the isolating effects of the skull. Lebedev (2014) if this cannot be achieved, then very small invasive implants (Seo et al., 2013) may be an alternative solution.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

We would like to thank Anders Sandberg (Oxford University), Leslie Seymour (PersInVitro) and Antje Birkner (Technical University Munich) for their inspiring comments and suggestions.

References

  1. Andersen R. A., Burdick J. W., Musallam S., Pesaran B., Cham J. G. (2004). Cognitive neural prosthetics. Trends Cognit. Sci. 8, 486–493 10.1016/j.tics.2004.09.009 [DOI] [PubMed] [Google Scholar]
  2. Atencio C. A., Shih J. Y., Schreiner C. E., Cheung S. W. (2014). Primary auditory cortical responses to electrical stimulation of the thalamus. J. Neurophysiol. 111, 1077–1087 10.1152/jn.00749.2012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berger T. W., Hampson R. E., Song D., Goonawardena A., Marmarelis V. Z., Deadwyler S. A. (2011). A cortical neural prosthesis for restoring and enhancing memory. J. Neural Eng. 8:046017 10.1088/1741-2560/8/4/046017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Briggman K. L., Helmstaedter M., Denk W. (2011). Wiring Specificity in the Direction-Selectivity circuit of the retina. Nature 471, 183–188 10.1038/nature09818 [DOI] [PubMed] [Google Scholar]
  5. Deadwyler S. A., Berger T. W., Sweatt A. J., Song D., Chan R. H. M., Opris I., et al. (2013). Donor/recipient enhancement of memory in rat hippocampus. Front. Syst. Neurosci. 7:120 10.3389/fnsys.2013.00120 [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deca D. (2011). Available tools for whole brain emulation. Int. J. Mach. Conscious 04, 67 10.1142/S1793843012400045 [DOI] [Google Scholar]
  7. Deca D. (2012). The Connectome, WBE and AGI. Artif. Gen. Intell. Lect. Notes Comp. Sci. 7716, 41–49 10.1007/978-3-642-35506-6_5 [DOI] [Google Scholar]
  8. Dibazar A. A., Yousefi A., Berger T. W. (2013). Multi-layer spike-in spike-out representation of Hippocampus circuitry, in Proceedings of the 6th International IEEE/EMBS Conference on Neural Engineering (NER) (San Diego, CA: ), 613–616 [Google Scholar]
  9. Ferrera V. P., Lisberger S. G. (1995). Attention and target selection for smooth pursuit eye movements. J. Neurosci. 15, 7472–7484 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ganguly K., Carmena J. M. (2009). Emergence of a stable cortical map for neuroprosthetics. PLoS Biol. 7, 1–13 10.1371/journal.pbio.1000153 [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Georgopoulos A. P., Kalaska J. F., Caminiti R., Massey J. T. (1982). On the Relations Between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 2, 1527–1537 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Georgopoulos A. P., Schwartz A., Kettner R. E. (1986). Neuronal population coding of movement direction. Science 233, 1416–1419 [DOI] [PubMed] [Google Scholar]
  13. Gilja V., Nuyujukian P., Chestek C. A., Cunningham J. P., Yu B. M., Fan J. M., et al. (2012). A high-performance neural prosthesis enabled by control algorithm design. Nat. Neurosci. 15, 1752–1757 10.1038/nn.3265 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Herreros I., Giovannucci A., Taub A. H., Hogri R., Magal A., Bamford S. A., et al. (2014). A cerebellar neuroprosthetic system: computational architecture and in vivo experiments. Front. Bioeng. Biotechnol. 2:14, 10.3389/fbioe.2014.00014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldberg M. E., Bushnell M. C., Bruce C. J. (1986). The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields. Exp. Brain Res. 61, 579–584 [DOI] [PubMed] [Google Scholar]
  16. Graziano M. S. A., Taylor C. S. R., Moore T. (2002). Complex movements evoked by microstimulation of precentral cortex. Neuron 34, 841–851 10.1016/S0896-6273(02)00698-0 [DOI] [PubMed] [Google Scholar]
  17. Guggenmos D. J., Azinc M., Barbaya S., Mahnkend J. D., Dunhama C., Mohsenic P., et al. (2013). Restoration of function after brain damage using a neural prosthesis. Proc. Natl. Acad. Sci. U.S.A. 110, 21177–21182 10.1073/pnas.1316885110 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hampson R. E., Gerhardt G. A., Marmarelis V., Song D., Opris I., Santos L., et al. (2012). Facilitation and restoration of cognitive function in primate prefrontal cortex by a neuroprosthesis that utilizes minicolumn-specific neural firing. J. Neural Eng. 9:056012 10.1088/1741-2560/9/5/056012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hampson R. E., Song D., Opris I., Santos L. M., Shin D. C., Gerhardt G. A., et al. (2013). Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing. J. Neural Eng. 10:066013 10.1088/1741-2560/10/6/066013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hochberg L. R., Serruya M. D., Friehs G. M., Mukand J. A., Saleh M., Caplan A. H., et al. (2006). Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 10.1038/nature04970 [DOI] [PubMed] [Google Scholar]
  21. Houweling A. R., Brecht M. (2008). Behavioural report of single neuron stimulation in somatosensory cortex. Nature 451, 65–68 10.1038/nature06447 [DOI] [PubMed] [Google Scholar]
  22. Kennedy P. R., Bakay R. A. (1998). Restoration of neural output from a paralyzed patient by a direct brain connection. Neuro Rep. 9, 1707–1711 [DOI] [PubMed] [Google Scholar]
  23. Lebedev M. (2014). Brain-machine interfaces: an overview. Transl. Neurosci. 5, 99–110 10.2478/s13380-014-0212-z [DOI] [Google Scholar]
  24. Lee S. H., Kwan A. C., Zhang S., Phoumthipphavong V., Flannery J. G., Masmanidis S. C., et al. (2012). Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488, 379–383 10.1038/nature11312 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Marblestone A. H., Zamft B. M., Maguire Y. G., Shapiro M. G., Cybulski T. R., Glaser J. I., et al. (2013). Physical principles for scalable neural recording. Front. Comput. Neurosci. 7:137 10.3389/fncom.2013.00137 [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Maynard E. M., Nordhausen C. T., Normann R. A. (1997). The utah intracortical electrode array: a recording structure for potential brain-computer interfaces, electroencephalography and Clinical. Neurophysiology 102, 228–239 [DOI] [PubMed] [Google Scholar]
  27. Nicolelis M. A. L. (2001). Actions from Thoughts. Nature 409, 403–407 10.1038/35053191 [DOI] [PubMed] [Google Scholar]
  28. Nicolelis M. A. L., Dimitrov D., Carmena J. M., Crist R., Lehew G., Kralik J. D., et al. (2003). Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl. Acad. Sci. U.S.A. 100, 11041–11046 10.1073/pnas.1934665100 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Opris I., Barborica A., Ferrera V. P. (2001). A gap effect during microstimulation in the prefrontal cortex of monkey. Exp. Brain Res. 138, 1–7 10.1007/s002210100686 [DOI] [PubMed] [Google Scholar]
  30. Opris I., Casanova M. F. (2014). Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. Brain 137(Pt 7), 1863–1875 10.1093/brain/awt359 [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Opris I., Santos L. M., Song D., Gerhardt G. A., Berger T. W., Hampson R. E., et al. (2013). Prefrontal cortical microcircuits bind perception to executive control. Sci. Rep. 3:2285 10.1038/srep02285 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Perea G., Yang A., Boyden E. S., Sur M. (2014). Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat. Commun. 5, 3262 10.1038/ncomms4262 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Prevedel R., Yoon Y.-G., Hoffmann M., Pak N., Wetzstein G., Kato S., et al. (2014). Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods 11, 727–730 10.1038/nmeth.2964 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Romo R., Hernandez A., Zainos A., Brody C. D., Lemus L. (2000). Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron 26, 273–278 10.1016/S0896-6273(00)81156-3 [DOI] [PubMed] [Google Scholar]
  35. Schafer R. J., Moore T. (2011). Selective attention from voluntary control of neurons in prefrontal cortex. Science 332, 1568–1571 10.1126/science.1199892 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schiller P. H., Tehovnik E. J. (2008). Visual prosthesis. Perception 37, 1529–1559 10.1068/p6100 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Seo D., Carmena J. M., Rabaey J. M., Alon E., Maharbiz M. M. (2013). Neural Dust: An Ultrasonic, Low Power Solution for Chronic Brain-Machine Interfaces, arXiv:1307.2196 [q-bio.NC]. [Google Scholar]
  38. Shadlen M. N., Newsome W. T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 [DOI] [PubMed] [Google Scholar]
  39. Simeral J. D., Kim S. P., Black M. J., Donoghue J. P., Hochberg L. R. (2011). Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J. Neural Eng. 8, 1–24 10.1088/1741-2560/8/2/025027 [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tehovnik E. J., Lee K. (1993). The dorsomedial frontal cortex of the rhesus monkey: topographic representation of saccades evoked by electrical stimulation. Exp. Brain Res. 96, 430–442 10.1007/BF00234111 [DOI] [PubMed] [Google Scholar]
  41. Truccolo W., Friehs G. M., Donoghue J. P., Hochberg L. R. (2008). Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia. J. Neurosci. 28, 1163–1178 10.1523/JNEUROSCI.4415-07.2008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wise R. A., Murray A., Bozarth M. A. (1990). Bromocriptine self-administration and bromocriptine-reinstatement of cocaine-trained and heroin-trained lever pressing in rats. Psychopharmacol 100, 355–360 [DOI] [PubMed] [Google Scholar]
  43. Yokel R. A., Wise R. A. (1976). Attenuation of intravenous amphetamine reinforcement by central dopamine blockade in rats. Psychopharmacology 48, 311–318 [DOI] [PubMed] [Google Scholar]
  44. Zhang F., Wang L. P., Brauner M., Liewald J. F., Kay K., Watzke N., et al. (2007). Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 10.1038/nature05744 [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Systems Neuroscience are provided here courtesy of Frontiers Media SA

RESOURCES