Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 May 9;92(10):4164–4168. doi: 10.1073/pnas.92.10.4164

Induced oleoresin biosynthesis in grand fir as a defense against bark beetles.

C L Steele 1, E Lewinsohn 1, R Croteau 1
PMCID: PMC41904  PMID: 7753778

Abstract

Grand fir (Abies grandis) saplings and derived cell cultures are useful systems for studying the regulation of defensive oleoresinosis in conifers, a process involving both the constitutive accumulation of resin (pitch) in specialized secretory structures and the induced production of monoterpene olefins (turpentine) and diterpene resin acids (rosin) by nonspecialized cells at the site of injury. The pathways and enzymes involved in monoterpene and diterpene resin acid biosynthesis are described, as are the coinduction kinetics following stem injury as determined by resin analysis, enzyme activity measurements, and immunoblotting. The effects of seasonal development, light deprivation, and water stress on constitutive and wound-induced oleoresinosis are reported. Future efforts, including a PCR-based cloning strategy, to define signal transduction in the wound response and the resulting gene activation processes are delineated.

Full text

PDF
4164

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bruce R. J., West C. A. Elicitation of Casbene Synthetase Activity in Castor Bean : THE ROLE OF PECTIC FRAGMENTS OF THE PLANT CELL WALL IN ELICITATION BY A FUNGAL ENDOPOLYGALACTURONASE. Plant Physiol. 1982 May;69(5):1181–1188. doi: 10.1104/pp.69.5.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chappell J., Vonlanken C., Vögeli U. Elicitor-inducible 3-hydroxy-3-methylglutaryl coenzyme a reductase activity is required for sesquiterpene accumulation in tobacco cell suspension cultures. Plant Physiol. 1991 Oct;97(2):693–698. doi: 10.1104/pp.97.2.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Choi D., Bostock R. M., Avdiushko S., Hildebrand D. F. Lipid-derived signals that discriminate wound- and pathogen-responsive isoprenoid pathways in plants: methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2329–2333. doi: 10.1073/pnas.91.6.2329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Choi D., Ward B. L., Bostock R. M. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid. Plant Cell. 1992 Oct;4(10):1333–1344. doi: 10.1105/tpc.4.10.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Colby S. M., Alonso W. R., Katahira E. J., McGarvey D. J., Croteau R. 4S-limonene synthase from the oil glands of spearmint (Mentha spicata). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. J Biol Chem. 1993 Nov 5;268(31):23016–23024. [PubMed] [Google Scholar]
  6. Croteau R. B., Wheeler C. J., Cane D. E., Ebert R., Ha H. J. Isotopically sensitive branching in the formation of cyclic monoterpenes: proof that (-)-alpha-pinene and (-)-beta-pinene are synthesized by the same monoterpene cyclase via deprotonation of a common intermediate. Biochemistry. 1987 Aug 25;26(17):5383–5389. doi: 10.1021/bi00391a025. [DOI] [PubMed] [Google Scholar]
  7. Croteau R., Gurkewitz S., Johnson M. A., Fisk H. J. Biochemistry of Oleoresinosis : Monoterpene and Diterpene Biosynthesis in Lodgepole Pine Saplings Infected with Ceratocystis clavigera or Treated with Carbohydrate Elicitors. Plant Physiol. 1987 Dec;85(4):1123–1128. doi: 10.1104/pp.85.4.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dudley M. W., Dueber M. T., West C. A. Biosynthesis of the Macrocyclic Diterpene Casbene in Castor Bean (Ricinus communis L.) Seedlings : Changes in Enzyme Levels Induced by Fungal Infection and Intracellular Localization of the Pathway. Plant Physiol. 1986 Jun;81(2):335–342. doi: 10.1104/pp.81.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Facchini P. J., Chappell J. Gene family for an elicitor-induced sesquiterpene cyclase in tobacco. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):11088–11092. doi: 10.1073/pnas.89.22.11088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Funk C., Croteau R. Diterpenoid resin acid biosynthesis in conifers: characterization of two cytochrome P450-dependent monooxygenases and an aldehyde dehydrogenase involved in abietic acid biosynthesis. Arch Biochem Biophys. 1994 Jan;308(1):258–266. doi: 10.1006/abbi.1994.1036. [DOI] [PubMed] [Google Scholar]
  12. Funk C., Lewinsohn E., Vogel B. S., Steele C. L., Croteau R. Regulation of Oleoresinosis in Grand Fir (Abies grandis) (Coordinate Induction of Monoterpene and Diterpene Cyclases and Two Cytochrome P450-Dependent Diterpenoid Hydroxylases by Stem Wounding). Plant Physiol. 1994 Nov;106(3):999–1005. doi: 10.1104/pp.106.3.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gijzen M., Lewinsohn E., Croteau R. Antigenic cross-reactivity among monoterpene cyclases from grand fir and induction of these enzymes upon stem wounding. Arch Biochem Biophys. 1992 May 1;294(2):670–674. doi: 10.1016/0003-9861(92)90740-n. [DOI] [PubMed] [Google Scholar]
  14. Gijzen M., Lewinsohn E., Croteau R. Characterization of the constitutive and wound-inducible monoterpene cyclases of grand fir (Abies grandis). Arch Biochem Biophys. 1991 Sep;289(2):267–273. doi: 10.1016/0003-9861(91)90471-t. [DOI] [PubMed] [Google Scholar]
  15. Hadwiger L. A., Wagoner W. Effect of Heat Shock on the mRNA-Directed Disease Resistance Response of Peas. Plant Physiol. 1983 Jun;72(2):553–556. doi: 10.1104/pp.72.2.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LaFever R. E., Vogel B. S., Croteau R. Diterpenoid resin acid biosynthesis in conifers: enzymatic cyclization of geranylgeranyl pyrophosphate to abietadiene, the precursor of abietic acid. Arch Biochem Biophys. 1994 Aug 15;313(1):139–149. doi: 10.1006/abbi.1994.1370. [DOI] [PubMed] [Google Scholar]
  17. Lewinsohn E., Gijzen M., Croteau R. Defense mechanisms of conifers : differences in constitutive and wound-induced monoterpene biosynthesis among species. Plant Physiol. 1991 May;96(1):44–49. doi: 10.1104/pp.96.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lewinsohn E., Gijzen M., Croteau R. Wound-inducible pinene cyclase from grand fir: purification, characterization, and renaturation after SDS-PAGE. Arch Biochem Biophys. 1992 Feb 14;293(1):167–173. doi: 10.1016/0003-9861(92)90380-f. [DOI] [PubMed] [Google Scholar]
  19. Lewinsohn E., Gijzen M., Muzika R. M., Barton K., Croteau R. Oleoresinosis in Grand Fir (Abies grandis) Saplings and Mature Trees (Modulation of this Wound Response by Light and Water Stresses). Plant Physiol. 1993 Mar;101(3):1021–1028. doi: 10.1104/pp.101.3.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lewinsohn E., Gijzen M., Savage T. J., Croteau R. Defense mechanisms of conifers : relationship of monoterpene cyclase activity to anatomical specialization and oleoresin monoterpene content. Plant Physiol. 1991 May;96(1):38–43. doi: 10.1104/pp.96.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lois A. F., West C. A. Regulation of expression of the casbene synthetase gene during elicitation of castor bean seedlings with pectic fragments. Arch Biochem Biophys. 1990 Jan;276(1):270–277. doi: 10.1016/0003-9861(90)90038-z. [DOI] [PubMed] [Google Scholar]
  22. Mau C. J., West C. A. Cloning of casbene synthase cDNA: evidence for conserved structural features among terpenoid cyclases in plants. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8497–8501. doi: 10.1073/pnas.91.18.8497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Savage T. J., Hatch M. W., Croteau R. Monoterpene synthases of Pinus contorta and related conifers. A new class of terpenoid cyclase. J Biol Chem. 1994 Feb 11;269(6):4012–4020. [PubMed] [Google Scholar]
  24. Vögeli U., Chappell J. Regulation of a sesquiterpene cyclase in cellulase-treated tobacco cell suspension cultures. Plant Physiol. 1990 Dec;94(4):1860–1866. doi: 10.1104/pp.94.4.1860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wagschal K. C., Pyun H. J., Coates R. M., Croteau R. Monoterpene biosynthesis: isotope effects associated with bicyclic olefin formation catalyzed by pinene synthases from sage (Salvia officinalis). Arch Biochem Biophys. 1994 Feb 1;308(2):477–487. doi: 10.1006/abbi.1994.1068. [DOI] [PubMed] [Google Scholar]
  26. Yang Z., Park H., Lacy G. H., Cramer C. L. Differential activation of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes by wounding and pathogen challenge. Plant Cell. 1991 Apr;3(4):397–405. doi: 10.1105/tpc.3.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES