Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2014 Oct 9;2(5):e01001-14. doi: 10.1128/genomeA.01001-14

Complete Genome Sequence of the RmInt1 Group II Intronless Sinorhizobium meliloti Strain RMO17

Nicolás Toro 1,, Francisco Martínez-Abarca 1, Rafael Nisa-Martínez 1
PMCID: PMC4192382  PMID: 25301650

Abstract

We report the complete genome sequence of the RmInt1 group II intronless Sinorhizobium meliloti strain RMO17 isolated from Medicago orbicularis nodules from Spanish soil. The genome consists of 6.73 Mb distributed between a single chromosome and two megaplasmids (the chromid pSymB and pSymA).

GENOME ANNOUNCEMENT

Sinorhizobium meliloti is the symbiotic partner of legumes of the genera Medicago, Melilotus, and Trigonella. The genomes of most of the legume symbionts are organized into several replicons and it has been proposed that these multipartite genomes and the genomic plasticity resulting from the presence of repetitive elements may be an ecological advantage, increasing the adaptive potential of these bacteria (1, 2). These repetitive elements include group II introns, a collection of self-splicing catalytic RNAs and retroelements (3, 4) widespread in bacteria (5). The genome sequences of seven S. meliloti strains are publicly available (611).

RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain (12). This intron is generally associated with and controls the spread of the ISRm2011-2 insertion sequence (1214), which is highly abundant, having been detected in all S. meliloti isolates tested (15). However, ~10% of S. meliloti isolates lack RmInt1, which is intriguing, because intron acquisition and mobility are not restricted in these isolates (16, 17).

S. meliloti strain RMO17 was isolated from nodules of Medicago orbicularis plants growing in mildly acidic soils from Riego de la Vega in León, Spain (18, 19). This RMO17 strain was confirmed to be a strain of S. meliloti by 16S rRNA sequencing and analyses of other taxonomic and phenotypic traits (20). Despite the presence of a large number of copies of the ISRm2011-2 element (12, 17, 21, 22), RMO17 is an RmInt1-less strain (17, 21).

We announce here the completion of the fully assembled and annotated genome sequence of a nonmucoid derivative of this RmInt1 intronless S. meliloti strain. Sequencing was performed on a GS FLX Titanium platform (Roche Diagnostics) at MACROGEN, Inc. (Korea), with both shotgun and 3 kb paired-end libraries, resulting in 180-fold genome coverage. The raw sequence data met the quality standards of the Genomes OnLine Database (GOLD) (23). GS FLX data processing was performed with Roche GS FLX software (v2.6). Assembly was achieved with the GS De Novo Assembler (v2.6), resulting in 10 scaffolds (>115 kb each; N50, 925,704 bp). Intrascaffold and interscaffold gaps were closed by the detailed observation of relevant sequencing reads with the Geneious R7 software platform (24).

The genome was annotated with the NCBI Prokaryotic Genome Annotation Pipeline. Replicon sizes and G+C contents were 3,649,532 bp (62.7%) for the chromosome, 1,610,737 bp (62.4%) for the chromid (pSymB), and 1,466,845 bp (60.4%) for the megaplasmid (pSymA). The complete genome consists of 6,136 protein-coding sequences. As in other S. meliloti genomes, three complete rrn operons were identified on the chromosome and there are 54 tRNA loci.

The complete sequence of this particular strain provides us with an opportunity to explore the evolutionary history of the presence and acquisition of group II introns and their relationship to the plasticity of complex bacterial genomes.

Nucleotide sequence accession numbers.

The nucleotide sequences of the three replicons of the S. meliloti RMO17 genome have been deposited in the GenBank database under accession numbers CP009144 to CP009146.

ACKNOWLEDGMENTS

This work was supported by research grants BIO2011-24401 from the Spanish Ministerio de Ciencia e Innovación, and CSD 2009-0006 of the Consolider-Ingenio program, including ERDF (European Regional Development Funds).

RMO17 was isolated by Encarna Velázquez (University of Salamanca).

Footnotes

Citation Toro N, Martínez-Abarca F, Nisa-Martínez R. 2014. Complete genome sequence of the RmInt1 group II intronless Sinorhizobium meliloti strain RMO17. Genome Announc. 2(5):e01001-14. doi:10.1128/genomeA.01001-14.

REFERENCES

  • 1. González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramírez MA, Jiménez-Jacinto V, Collado-Vides J, Dávila G. 2006. The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc. Natl. Acad. Sci. U. S. A. 103:3834–3839. 10.1073/pnas.0508502103 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Lozano L, Hernández-González I, Bustos P, Santamaría RI, Souza V, Young JP, Dávila G, González V. 2010. Evolutionary dynamics of insertion sequences in relation to the evolutionary histories of the chromosome and symbiotic plasmid genes of Rhizobium etli populations. Appl. Environ. Microbiol. 76:6504–6513. 10.1128/AEM.01001-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Toro N, Jiménez-Zurdo JI, García-Rodríguez FM. 2007. Bacterial group II introns: not just splicing. FEMS Microbiol. Rev. 31:342–358 [DOI] [PubMed] [Google Scholar]
  • 4. Lambowitz AM, Zimmerly S. 2010. Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb. Perspect. Biol. 3:a003616. 10.1101/cshperspect.a003616 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Candales MA, Duong A, Hood KS, Li T, Neufeld RAE, Sun R, McNeil BA, Wu L, Jarding AM, Zimmerly S. 2012. Database for bacterial group II introns. Nucleic Acids Res. 40(D1):D187–D190. 10.1093/nar/gkr1043 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Galibert F, Finan TM, Long SR, Pühler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dréano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl T, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thébault P, Vandenbol M, Vorhölter F-J, Weidner S, Wells DH, Wong K, Yeh K-C, Batut J. 2001. The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672. 10.1126/science.1060966 [DOI] [PubMed] [Google Scholar]
  • 7. Schneiker-Bekel S, Wibberg D, Bekel T, Blom J, Linke B, Neuweger H, Stiens M, Vorhölter FJ, Weidner S, Goesmann A, Pühler A, Schlüter A. 2011. The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome. J. Biotechnol. 155:20–33. 10.1016/j.jbiotec.2010.12.018 [DOI] [PubMed] [Google Scholar]
  • 8. Galardini M, Mengoni A, Brilli M, Pini F, Fioravanti A, Lucas S, Lapidus A, Cheng JF, Goodwin L, Pitluck S, Land M, Hauser L, Woyke T, Mikhailova N, Ivanova N, Daligault H, Bruce D, Detter C, Tapia R, Han C, Teshima H, Mocali S, Bazzicalupo M, Biondi EG. 2011. Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti. BMC Genomics 12:235. 10.1186/1471-2164-12-235 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Martínez-Abarca F, Martínez-Rodríguez L, López-Contreras JA, Jiménez-Zurdo JI, Toro N. 2013. Complete genome sequence of the alfalfa symbiont Sinorhizobium/Ensifer meliloti strain GR4. Genome Announc. 1(1):e00174-12. 10.1128/genomeA.00174-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Weidner S, Baumgarth B, Göttfert M, Jaenicke S, Pühler A, Schneiker-Bekel S, Serrania J, Szczepanowski R, Becker A. 2013. Genome sequence of Sinorhizobium meliloti Rm41. Genome Announc. 1(1):e00013-12. 10.1128/genomeA.00013-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Sallet E, Roux B, Sauviac L, Jardinaud MF, Carrère S, Faraut T, de Carvalho-Niebel F, Gouzy J, Gamas P, Capela D, Bruand C, Schiex T. 2013. Next-generation annotation of prokaryotic genomes with EuGene-P: application to Sinorhizobium meliloti 2011. DNA Res. 20:339–354. 10.1093/dnares/dst014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Martínez-Abarca F, Zekri S, Toro N. 1998. Characterization and splicing in vivo of a Sinorhizobium meliloti group II intron associated with particular insertion sequences of the IS630-Tc1/IS3 retroposon superfamily. Mol. Microbiol. 28:1295–1306. 10.1046/j.1365-2958.1998.00894.x [DOI] [PubMed] [Google Scholar]
  • 13. Chillón I, Martínez-Abarca F, Toro N. 2011. Splicing of the Sinorhizobium meliloti RmInt1 group II intron provides evidence of retroelement behavior. Nucleic Acids Res. 39:1095–1104. 10.1093/nar/gkq847 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Toro N, Martínez-Rodríguez L, Martínez-Abarca F. 16 April 2014. Insights into the history of a bacterial group II intron remnant from the genomes of the nitrogen-fixing symbionts Sinorhizobium meliloti and Sinorhizobium medicae. Heredity (Edinb). 10.1038/hdy.2014.32 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Selbitschka W, Arnold W, Jording D, Kosier B, Toro N, Pühler A. 1995. The insertion sequence element ISRm2011-2 belongs to the IS630-Tc1 family of transposable elements and is abundant in Rhizobium meliloti. Gene 163:59–64. 10.1016/0378-1119(95)00371-C [DOI] [PubMed] [Google Scholar]
  • 16. Muñoz E, Villadas PJ, Toro N. 2001. Ectopic transposition of a group II intron in natural bacterial populations. Mol. Microbiol. 41(3):645–652. 10.1046/j.1365-2958.2001.02540.x [DOI] [PubMed] [Google Scholar]
  • 17. Nisa-Martínez R, Jiménez-Zurdo JI, Martínez-Abarca F, Muñoz-Adelantado E, Toro N. 2007. Dispersion of the RmInt1 group II intron in the Sinorhizobium meliloti genome upon acquisition by conjugative transfer. Nucleic Acids Res. 35(1):214–222 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Villadas PJ, Velázquez E, Martínez-Molina E, Toro N. 1995. Identification of nodule-dominant Rhizobium meliloti strains carrying pRmeGR4b-type plasmid within indigenous soil populations by PCR using primers derived from specific DNA sequences. FEMS Microbiol. Ecol. 17:161–168. 10.1111/j.1574-6941.1995.tb00139.x [DOI] [Google Scholar]
  • 19. Villar-Igea M, Velázquez E, Rivas R, Willems A, Berkum P, Trujillo ME, Mateos PF, Gillis M, Martínez-Molina E. 2007. Phosphate solubilizing rhizobia originating from Medicago, Melilotus and Trigonella grown in a Spanish soil, p 149–156 In Velázquez E, Rodríguez-Barrueco C. (ed), First international meeting on microbial phosphate solubilization. Developments in plant and soil sciences. Springer Verlag, Dordrecht, Netherlands [Google Scholar]
  • 20. Rivas R, Velázquez E, Zurdo-Piñeiro JL, Mateos PF, Martínez-Molina E. 2004. Identification of microorganisms by PCR amplification and sequencing of a universal amplified ribosomal region present in both prokaryotes and eukaryotes. J. Microbiol. Methods 56:413–426. 10.1016/j.mimet.2003.11.007 [DOI] [PubMed] [Google Scholar]
  • 21. Martínez-Abarca F, García-Rodríguez FM, Toro N. 2000. Homing of a bacterial group II intron with an intron-encoded protein lacking a recognizable endonuclease domain. Mol. Microbiol. 35(6):1405–1412 [DOI] [PubMed] [Google Scholar]
  • 22. Fernández-López M, Muñoz-Adelantado E, Gillis M, Willems A, Toro N. 2005. Dispersal and evolution of the Sinorhizobium meliloti group II RmInt1 intron in bacteria that interact with plants. Mol. Biol. Evol. 22(6):1518–1528. 10.1093/molbev/msi144 [DOI] [PubMed] [Google Scholar]
  • 23. Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyrpides NC. 2010. The genomes on line database (gold) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res. 38:D346–D354. 10.1093/nar/gkp848 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. 10.1093/bioinformatics/bts199 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES