Abstract
mac25, the subject of this report, was selected by the differential display of mRNA method in a search for genes overexpressed in senescent human mammary epithelial cells. mac25 had previously been cloned as a discrete gene, preferentially expressed in normal, leptomeningial cells compared with meningioma tumors. mac25 is another member of the insulin growth factor-binding protein (IGFBP) family. Insulin-like growth factors are potent mitogens for mammary epithelial cells, and the IGFBPs have been shown to modulate this mitogenic activity. We report here that mac25, unlike most IGFBPs, is down-regulated at the transcription level in mammary carcinoma cell lines, suggesting a tumor-suppressor role. The gene was mapped to chromosome 4q12. We found that mac25 accumulates in senescent cells and is up-regulated in normal, growing mammary epithelial cells by all-trans-retinoic acid or the synthetic retinoid fenretinide. These findings suggest that mac25 may be a downstream effector of retinoid chemoprevention in breast epithelial cells and that its tumor-suppressive role may involve a senescence pathway.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamo M. L., Shao Z. M., Lanau F., Chen J. C., Clemmons D. R., Roberts C. T., Jr, LeRoith D., Fontana J. A. Insulin-like growth factor-I (IGF-I) and retinoic acid modulation of IGF-binding proteins (IGFBPs): IGFBP-2, -3, and -4 gene expression and protein secretion in a breast cancer cell line. Endocrinology. 1992 Oct;131(4):1858–1866. doi: 10.1210/endo.131.4.1382963. [DOI] [PubMed] [Google Scholar]
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Arteaga C. L. Interference of the IGF system as a strategy to inhibit breast cancer growth. Breast Cancer Res Treat. 1992;22(1):101–106. doi: 10.1007/BF01833338. [DOI] [PubMed] [Google Scholar]
- Band V., De Caprio J. A., Delmolino L., Kulesa V., Sager R. Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells. J Virol. 1991 Dec;65(12):6671–6676. doi: 10.1128/jvi.65.12.6671-6676.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Band V., Sager R. Distinctive traits of normal and tumor-derived human mammary epithelial cells expressed in a medium that supports long-term growth of both cell types. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1249–1253. doi: 10.1073/pnas.86.4.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bryant-Greenwood G. D., Schwabe C. Human relaxins: chemistry and biology. Endocr Rev. 1994 Feb;15(1):5–26. doi: 10.1210/edrv-15-1-5. [DOI] [PubMed] [Google Scholar]
- Chen J. C., Shao Z. M., Sheikh M. S., Hussain A., LeRoith D., Roberts C. T., Jr, Fontana J. A. Insulin-like growth factor-binding protein enhancement of insulin-like growth factor-I (IGF-I)-mediated DNA synthesis and IGF-I binding in a human breast carcinoma cell line. J Cell Physiol. 1994 Jan;158(1):69–78. doi: 10.1002/jcp.1041580110. [DOI] [PubMed] [Google Scholar]
- Clemmons D. R., Jones J. I., Busby W. H., Wright G. Role of insulin-like growth factor binding proteins in modifying IGF actions. Ann N Y Acad Sci. 1993 Aug 27;692:10–21. doi: 10.1111/j.1749-6632.1993.tb26201.x. [DOI] [PubMed] [Google Scholar]
- Drop S. L., Schuller A. G., Lindenbergh-Kortleve D. J., Groffen C., Brinkman A., Zwarthoff E. C. Structural aspects of the IGFBP family. Growth Regul. 1992 Jun;2(2):69–79. [PubMed] [Google Scholar]
- Edelhoff S., Ayer D. E., Zervos A. S., Steingrímsson E., Jenkins N. A., Copeland N. G., Eisenman R. N., Brent R., Disteche C. M. Mapping of two genes encoding members of a distinct subfamily of MAX interacting proteins: MAD to human chromosome 2 and mouse chromosome 6, and MXI1 to human chromosome 10 and mouse chromosome 19. Oncogene. 1994 Feb;9(2):665–668. [PubMed] [Google Scholar]
- Figueroa J. A., Jackson J. G., McGuire W. L., Krywicki R. F., Yee D. Expression of insulin-like growth factor binding proteins in human breast cancer correlates with estrogen receptor status. J Cell Biochem. 1993 Jun;52(2):196–205. doi: 10.1002/jcb.240520211. [DOI] [PubMed] [Google Scholar]
- Figueroa J. A., Sharma J., Jackson J. G., McDermott M. J., Hilsenbeck S. G., Yee D. Recombinant insulin-like growth factor binding protein-1 inhibits IGF-I, serum, and estrogen-dependent growth of MCF-7 human breast cancer cells. J Cell Physiol. 1993 Nov;157(2):229–236. doi: 10.1002/jcp.1041570204. [DOI] [PubMed] [Google Scholar]
- Figueroa J. A., Yee D. The insulin-like growth factor binding proteins (IGFBPs) in human breast cancer. Breast Cancer Res Treat. 1992;22(1):81–90. doi: 10.1007/BF01833336. [DOI] [PubMed] [Google Scholar]
- Fontana J. A., Burrows-Mezu A., Clemmons D. R., LeRoith D. Retinoid modulation of insulin-like growth factor-binding proteins and inhibition of breast carcinoma proliferation. Endocrinology. 1991 Feb;128(2):1115–1122. doi: 10.1210/endo-128-2-1115. [DOI] [PubMed] [Google Scholar]
- Goldstein S., Moerman E. J., Baxter R. C. Accumulation of insulin-like growth factor binding protein-3 in conditioned medium of human fibroblasts increases with chronologic age of donor and senescence in vitro. J Cell Physiol. 1993 Aug;156(2):294–302. doi: 10.1002/jcp.1041560211. [DOI] [PubMed] [Google Scholar]
- LeRoith D., Adamo M. L., Shemer J., Lanau F., Shen-Orr Z., Yaron A., Roberts C. T., Jr, Clemmons D. R., Sheikh M. S., Shao Z. M. Retinoic acid inhibits growth of breast cancer cell lines: the role of insulin-like growth factor binding proteins. Growth Regul. 1993 Mar;3(1):78–80. [PubMed] [Google Scholar]
- Li X. S., Chen J. C., Sheikh M. S., Shao Z. M., Fontana J. A. Retinoic acid inhibition of insulin-like growth factor I stimulation of c-fos mRNA levels in a breast carcinoma cell line. Exp Cell Res. 1994 Mar;211(1):68–73. doi: 10.1006/excr.1994.1060. [DOI] [PubMed] [Google Scholar]
- Liang P., Averboukh L., Pardee A. B. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res. 1993 Jul 11;21(14):3269–3275. doi: 10.1093/nar/21.14.3269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. doi: 10.1126/science.1354393. [DOI] [PubMed] [Google Scholar]
- Liang P., Zhu W., Zhang X., Guo Z., O'Connell R. P., Averboukh L., Wang F., Pardee A. B. Differential display using one-base anchored oligo-dT primers. Nucleic Acids Res. 1994 Dec 25;22(25):5763–5764. doi: 10.1093/nar/22.25.5763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu L., Brinkman A., Blat C., Harel L. IGFBP-1, an insulin like growth factor binding protein, is a cell growth inhibitor. Biochem Biophys Res Commun. 1991 Jan 31;174(2):673–679. doi: 10.1016/0006-291x(91)91470-w. [DOI] [PubMed] [Google Scholar]
- Macaulay V. M. Insulin-like growth factors and cancer. Br J Cancer. 1992 Mar;65(3):311–320. doi: 10.1038/bjc.1992.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manni A., Badger B., Wei L., Zaenglein A., Grove R., Khin S., Heitjan D., Shimasaki S., Ling N. Hormonal regulation of insulin-like growth factor II and insulin-like growth factor binding protein expression by breast cancer cells in vivo: evidence for stromal epithelial interactions. Cancer Res. 1994 Jun 1;54(11):2934–2942. [PubMed] [Google Scholar]
- Masiakowski P., Breathnach R., Bloch J., Gannon F., Krust A., Chambon P. Cloning of cDNA sequences of hormone-regulated genes from the MCF-7 human breast cancer cell line. Nucleic Acids Res. 1982 Dec 20;10(24):7895–7903. doi: 10.1093/nar/10.24.7895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGuire S. E., Hilsenbeck S. G., Figueroa J. A., Jackson J. G., Yee D. Detection of insulin-like growth factor binding proteins (IGFBPs) by ligand blotting in breast cancer tissues. Cancer Lett. 1994 Feb 28;77(1):25–32. doi: 10.1016/0304-3835(94)90343-3. [DOI] [PubMed] [Google Scholar]
- McGuire W. L., Jr, Jackson J. G., Figueroa J. A., Shimasaki S., Powell D. R., Yee D. Regulation of insulin-like growth factor-binding protein (IGFBP) expression by breast cancer cells: use of IGFBP-1 as an inhibitor of insulin-like growth factor action. J Natl Cancer Inst. 1992 Sep 2;84(17):1336–1341. doi: 10.1093/jnci/84.17.1336. [DOI] [PubMed] [Google Scholar]
- Murphy M., Pykett M. J., Harnish P., Zang K. D., George D. L. Identification and characterization of genes differentially expressed in meningiomas. Cell Growth Differ. 1993 Sep;4(9):715–722. [PubMed] [Google Scholar]
- Pekonen F., Nyman T., Ilvesmäki V., Partanen S. Insulin-like growth factor binding proteins in human breast cancer tissue. Cancer Res. 1992 Oct 1;52(19):5204–5207. [PubMed] [Google Scholar]
- Rechler M. M. Insulin-like growth factor binding proteins. Vitam Horm. 1993;47:1–114. doi: 10.1016/s0083-6729(08)60444-6. [DOI] [PubMed] [Google Scholar]
- Sacchi T. B., Bani D., Brandi M. L., Falchetti A., Bigazzi M. Relaxin influences growth, differentiation and cell-cell adhesion of human breast-cancer cells in culture. Int J Cancer. 1994 Apr 1;57(1):129–134. doi: 10.1002/ijc.2910570123. [DOI] [PubMed] [Google Scholar]
- Sager R., Anisowicz A., Neveu M., Liang P., Sotiropoulou G. Identification by differential display of alpha 6 integrin as a candidate tumor suppressor gene. FASEB J. 1993 Jul;7(10):964–970. doi: 10.1096/fasebj.7.10.8344495. [DOI] [PubMed] [Google Scholar]
- Sager R. Senescence as a mode of tumor suppression. Environ Health Perspect. 1991 Jun;93:59–62. doi: 10.1289/ehp.919359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saunders N. A., Smith R. J., Jetten A. M. Regulation of proliferation-specific and differentiation-specific genes during senescence of human epidermal keratinocyte and mammary epithelial cells. Biochem Biophys Res Commun. 1993 Nov 30;197(1):46–54. doi: 10.1006/bbrc.1993.2439. [DOI] [PubMed] [Google Scholar]
- Schüle R., Umesono K., Mangelsdorf D. J., Bolado J., Pike J. W., Evans R. M. Jun-Fos and receptors for vitamins A and D recognize a common response element in the human osteocalcin gene. Cell. 1990 May 4;61(3):497–504. doi: 10.1016/0092-8674(90)90531-i. [DOI] [PubMed] [Google Scholar]
- Sheikh M. S., Shao Z. M., Hussain A., Chen J. C., Roberts C. T., Jr, LeRoith D., Fontana J. A. Retinoic acid and estrogen modulation of insulin-like growth factor binding protein-4 gene expression and the estrogen receptor status of human breast carcinoma cells. Biochem Biophys Res Commun. 1993 Jun 30;193(3):1232–1238. doi: 10.1006/bbrc.1993.1757. [DOI] [PubMed] [Google Scholar]
- Swisshelm K., Ryan K., Lee X., Tsou H. C., Peacocke M., Sager R. Down-regulation of retinoic acid receptor beta in mammary carcinoma cell lines and its up-regulation in senescing normal mammary epithelial cells. Cell Growth Differ. 1994 Feb;5(2):133–141. [PubMed] [Google Scholar]
- Takahashi K., Suzuki K. Association of insulin-like growth-factor-I-induced DNA synthesis with phosphorylation and nuclear exclusion of p53 in human breast cancer MCF-7 cells. Int J Cancer. 1993 Sep 30;55(3):453–458. doi: 10.1002/ijc.2910550322. [DOI] [PubMed] [Google Scholar]
- Torrisi R., Pensa F., Orengo M. A., Catsafados E., Ponzani P., Boccardo F., Costa A., Decensi A. The synthetic retinoid fenretinide lowers plasma insulin-like growth factor I levels in breast cancer patients. Cancer Res. 1993 Oct 15;53(20):4769–4771. [PubMed] [Google Scholar]
- Yee D., Favoni R. E., Lupu R., Cullen K. J., Lebovic G. S., Huff K. K., Lee P. D., Lee Y. L., Powell D. R., Dickson R. B. The insulin-like growth factor binding protein BP-25 is expressed by human breast cancer cells. Biochem Biophys Res Commun. 1989 Jan 16;158(1):38–44. doi: 10.1016/s0006-291x(89)80173-1. [DOI] [PubMed] [Google Scholar]
- Yee D., Jackson J. G., Kozelsky T. W., Figueroa J. A. Insulin-like growth factor binding protein 1 expression inhibits insulin-like growth factor I action in MCF-7 breast cancer cells. Cell Growth Differ. 1994 Jan;5(1):73–77. [PubMed] [Google Scholar]