Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 May 9;92(10):4552–4556. doi: 10.1073/pnas.92.10.4552

L-arginine may mediate the therapeutic effects of low protein diets.

I Narita 1, W A Border 1, M Ketteler 1, E Ruoslahti 1, N A Noble 1
PMCID: PMC41982  PMID: 7753841

Abstract

We have previously shown beneficial effects of dietary protein restriction on transforming growth factor beta (TGF-beta) expression and glomerular matrix accumulation in experimental glomerulonephritis. We hypothesized that these effects result from restriction of dietary L-arginine intake. Arginine is a precursor for three pathways, the products of which are involved in tissue injury and repair: nitric oxide, an effector molecule in inflammatory and immunological tissue injury; polyamines, which are required for DNA synthesis and cell growth; and proline, which is required for collagen production. Rats were fed six isocaloric diets differing in L-arginine and/or total protein content, starting immediately after induction of glomerulonephritis by injection of an antibody reactive to glomerular mesangial cells. Mesangial cell lysis and monocyte/macrophage infiltration did not differ with diet. However, restriction of dietary L-arginine intake, even when total protein intake was normal, resulted in decreased proteinuria, decreased expression of TGF-beta 1 mRNA and TGF-beta 1 protein, and decreased production and deposition of matrix components. L-Arginine, but not D-arginine, supplementation to low protein diets reversed these effects. These results implicate arginine as a key component in the beneficial effects of low protein diet.

Full text

PDF
4552

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albina J. E., Mills C. D., Barbul A., Thirkill C. E., Henry W. L., Jr, Mastrofrancesco B., Caldwell M. D. Arginine metabolism in wounds. Am J Physiol. 1988 Apr;254(4 Pt 1):E459–E467. doi: 10.1152/ajpendo.1988.254.4.E459. [DOI] [PubMed] [Google Scholar]
  2. Albina J. E., Mills C. D., Henry W. L., Jr, Caldwell M. D. Temporal expression of different pathways of 1-arginine metabolism in healing wounds. J Immunol. 1990 May 15;144(10):3877–3880. [PubMed] [Google Scholar]
  3. Ames B. N., Shigenaga M. K., Hagen T. M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7915–7922. doi: 10.1073/pnas.90.17.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balza E., Borsi L., Allemanni G., Zardi L. Transforming growth factor beta regulates the levels of different fibronectin isoforms in normal human cultured fibroblasts. FEBS Lett. 1988 Feb 8;228(1):42–44. doi: 10.1016/0014-5793(88)80580-5. [DOI] [PubMed] [Google Scholar]
  5. Barbul A. Arginine: biochemistry, physiology, and therapeutic implications. JPEN J Parenter Enteral Nutr. 1986 Mar-Apr;10(2):227–238. doi: 10.1177/0148607186010002227. [DOI] [PubMed] [Google Scholar]
  6. Barbul A., Lazarou S. A., Efron D. T., Wasserkrug H. L., Efron G. Arginine enhances wound healing and lymphocyte immune responses in humans. Surgery. 1990 Aug;108(2):331–337. [PubMed] [Google Scholar]
  7. Beck L. S., DeGuzman L., Lee W. P., Xu Y., Siegel M. W., Amento E. P. One systemic administration of transforming growth factor-beta 1 reverses age- or glucocorticoid-impaired wound healing. J Clin Invest. 1993 Dec;92(6):2841–2849. doi: 10.1172/JCI116904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bernstein E. F., Harisiadis L., Salomon G., Norton J., Sollberg S., Uitto J., Glatstein E., Glass J., Talbot T., Russo A. Transforming growth factor-beta improves healing of radiation-impaired wounds. J Invest Dermatol. 1991 Sep;97(3):430–434. doi: 10.1111/1523-1747.ep12481258. [DOI] [PubMed] [Google Scholar]
  9. Border W. A., Noble N. A. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994 Nov 10;331(19):1286–1292. doi: 10.1056/NEJM199411103311907. [DOI] [PubMed] [Google Scholar]
  10. Border W. A., Okuda S., Languino L. R., Sporn M. B., Ruoslahti E. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature. 1990 Jul 26;346(6282):371–374. doi: 10.1038/346371a0. [DOI] [PubMed] [Google Scholar]
  11. Border W. A., Okuda S., Languino L. R., Sporn M. B., Ruoslahti E. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature. 1990 Jul 26;346(6282):371–374. doi: 10.1038/346371a0. [DOI] [PubMed] [Google Scholar]
  12. Border W. A., Ruoslahti E. Transforming growth factor-beta in disease: the dark side of tissue repair. J Clin Invest. 1992 Jul;90(1):1–7. doi: 10.1172/JCI115821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Brenner B. M., Meyer T. W., Hostetter T. H. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med. 1982 Sep 9;307(11):652–659. doi: 10.1056/NEJM198209093071104. [DOI] [PubMed] [Google Scholar]
  14. Castillo L., Chapman T. E., Sanchez M., Yu Y. M., Burke J. F., Ajami A. M., Vogt J., Young V. R. Plasma arginine and citrulline kinetics in adults given adequate and arginine-free diets. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7749–7753. doi: 10.1073/pnas.90.16.7749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cattell V., Cook T., Moncada S. Glomeruli synthesize nitrite in experimental nephrotoxic nephritis. Kidney Int. 1990 Dec;38(6):1056–1060. doi: 10.1038/ki.1990.312. [DOI] [PubMed] [Google Scholar]
  16. Cattell V., Largen P., de Heer E., Cook T. Glomeruli synthesize nitrite in active Heymann nephritis; the source is infiltrating macrophages. Kidney Int. 1991 Nov;40(5):847–851. doi: 10.1038/ki.1991.284. [DOI] [PubMed] [Google Scholar]
  17. Chen P. Y., Sanders P. W. L-arginine abrogates salt-sensitive hypertension in Dahl/Rapp rats. J Clin Invest. 1991 Nov;88(5):1559–1567. doi: 10.1172/JCI115467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Chen P. Y., St John P. L., Kirk K. A., Abrahamson D. R., Sanders P. W. Hypertensive nephrosclerosis in the Dahl/Rapp rat. Initial sites of injury and effect of dietary L-arginine supplementation. Lab Invest. 1993 Feb;68(2):174–184. [PubMed] [Google Scholar]
  19. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  20. Daly J. M., Lieberman M. D., Goldfine J., Shou J., Weintraub F., Rosato E. F., Lavin P. Enteral nutrition with supplemental arginine, RNA, and omega-3 fatty acids in patients after operation: immunologic, metabolic, and clinical outcome. Surgery. 1992 Jul;112(1):56–67. [PubMed] [Google Scholar]
  21. De Nicola L., Thomson S. C., Wead L. M., Brown M. R., Gabbai F. B. Arginine feeding modifies cyclosporine nephrotoxicity in rats. J Clin Invest. 1993 Oct;92(4):1859–1865. doi: 10.1172/JCI116777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Flanders K. C., Thompson N. L., Cissel D. S., Van Obberghen-Schilling E., Baker C. C., Kass M. E., Ellingsworth L. R., Roberts A. B., Sporn M. B. Transforming growth factor-beta 1: histochemical localization with antibodies to different epitopes. J Cell Biol. 1989 Feb;108(2):653–660. doi: 10.1083/jcb.108.2.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Geller D. A., Nussler A. K., Di Silvio M., Lowenstein C. J., Shapiro R. A., Wang S. C., Simmons R. L., Billiar T. R. Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):522–526. doi: 10.1073/pnas.90.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  25. Hibbs J. B., Jr, Vavrin Z., Taintor R. R. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol. 1987 Jan 15;138(2):550–565. [PubMed] [Google Scholar]
  26. Isaka Y., Fujiwara Y., Ueda N., Kaneda Y., Kamada T., Imai E. Glomerulosclerosis induced by in vivo transfection of transforming growth factor-beta or platelet-derived growth factor gene into the rat kidney. J Clin Invest. 1993 Dec;92(6):2597–2601. doi: 10.1172/JCI116874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kagami S., Border W. A., Ruoslahti E., Noble N. A. Coordinated expression of beta 1 integrins and transforming growth factor-beta-induced matrix proteins in glomerulonephritis. Lab Invest. 1993 Jul;69(1):68–76. [PubMed] [Google Scholar]
  28. Katoh T., Takahashi K., Klahr S., Reyes A. A., Badr K. F. Dietary supplementation with L-arginine ameliorates glomerular hypertension in rats with subtotal nephrectomy. J Am Soc Nephrol. 1994 Mar;4(9):1690–1694. doi: 10.1681/ASN.V491690. [DOI] [PubMed] [Google Scholar]
  29. Klahr S., Schreiner G., Ichikawa I. The progression of renal disease. N Engl J Med. 1988 Jun 23;318(25):1657–1666. doi: 10.1056/NEJM198806233182505. [DOI] [PubMed] [Google Scholar]
  30. Koprowski H., Zheng Y. M., Heber-Katz E., Fraser N., Rorke L., Fu Z. F., Hanlon C., Dietzschold B. In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3024–3027. doi: 10.1073/pnas.90.7.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Marsden P. A., Ballermann B. J. Tumor necrosis factor alpha activates soluble guanylate cyclase in bovine glomerular mesangial cells via an L-arginine-dependent mechanism. J Exp Med. 1990 Dec 1;172(6):1843–1852. doi: 10.1084/jem.172.6.1843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Matheis G., Sherman M. P., Buckberg G. D., Haybron D. M., Young H. H., Ignarro L. J. Role of L-arginine-nitric oxide pathway in myocardial reoxygenation injury. Am J Physiol. 1992 Feb;262(2 Pt 2):H616–H620. doi: 10.1152/ajpheart.1992.262.2.H616. [DOI] [PubMed] [Google Scholar]
  33. McCartney-Francis N., Allen J. B., Mizel D. E., Albina J. E., Xie Q. W., Nathan C. F., Wahl S. M. Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med. 1993 Aug 1;178(2):749–754. doi: 10.1084/jem.178.2.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  35. Mulligan M. S., Hevel J. M., Marletta M. A., Ward P. A. Tissue injury caused by deposition of immune complexes is L-arginine dependent. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6338–6342. doi: 10.1073/pnas.88.14.6338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Narita I., Border W. A., Ketteler M., Noble N. A. Nitric oxide mediates immunologic injury to kidney mesangium in experimental glomerulonephritis. Lab Invest. 1995 Jan;72(1):17–24. [PubMed] [Google Scholar]
  37. Nirgiotis J. G., Hennessey P. J., Andrassy R. J. The effects of an arginine-free enteral diet on wound healing and immune function in the postsurgical rat. J Pediatr Surg. 1991 Aug;26(8):936–941. doi: 10.1016/0022-3468(91)90840-p. [DOI] [PubMed] [Google Scholar]
  38. Okuda S., Languino L. R., Ruoslahti E., Border W. A. Elevated expression of transforming growth factor-beta and proteoglycan production in experimental glomerulonephritis. Possible role in expansion of the mesangial extracellular matrix. J Clin Invest. 1990 Aug;86(2):453–462. doi: 10.1172/JCI114731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Okuda S., Nakamura T., Yamamoto T., Ruoslahti E., Border W. A. Dietary protein restriction rapidly reduces transforming growth factor beta 1 expression in experimental glomerulonephritis. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9765–9769. doi: 10.1073/pnas.88.21.9765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
  41. Reyes A. A., Martin D., Settle S., Klahr S. EDRF role in renal function and blood pressure of normal rats and rats with obstructive uropathy. Kidney Int. 1992 Feb;41(2):403–413. doi: 10.1038/ki.1992.56. [DOI] [PubMed] [Google Scholar]
  42. Reyes A. A., Porras B. H., Chasalow F. I., Klahr S. L-arginine decreases the infiltration of the kidney by macrophages in obstructive nephropathy and puromycin-induced nephrosis. Kidney Int. 1994 May;45(5):1346–1354. doi: 10.1038/ki.1994.176. [DOI] [PubMed] [Google Scholar]
  43. Reyes A. A., Purkerson M. L., Karl I., Klahr S. Dietary supplementation with L-arginine ameliorates the progression of renal disease in rats with subtotal nephrectomy. Am J Kidney Dis. 1992 Aug;20(2):168–176. doi: 10.1016/s0272-6386(12)80546-4. [DOI] [PubMed] [Google Scholar]
  44. Roberts A. B., Vodovotz Y., Roche N. S., Sporn M. B., Nathan C. F. Role of nitric oxide in antagonistic effects of transforming growth factor-beta and interleukin-1 beta on the beating rate of cultured cardiac myocytes. Mol Endocrinol. 1992 Nov;6(11):1921–1930. doi: 10.1210/mend.6.11.1282674. [DOI] [PubMed] [Google Scholar]
  45. Salahudeen A. K., Hostetter T. H., Raatz S. K., Rosenberg M. E. Effects of dietary protein in patients with chronic renal transplant rejection. Kidney Int. 1992 Jan;41(1):183–190. doi: 10.1038/ki.1992.25. [DOI] [PubMed] [Google Scholar]
  46. Seifter E., Rettura G., Barbul A., Levenson S. M. Arginine: an essential amino acid for injured rats. Surgery. 1978 Aug;84(2):224–230. [PubMed] [Google Scholar]
  47. Shih V. E. Regulation of ornithine metabolism. Enzyme. 1981;26(5):254–258. doi: 10.1159/000459187. [DOI] [PubMed] [Google Scholar]
  48. Stuehr D. J., Marletta M. A. Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines, or interferon-gamma. J Immunol. 1987 Jul 15;139(2):518–525. [PubMed] [Google Scholar]
  49. Tomooka S., Border W. A., Marshall B. C., Noble N. A. Glomerular matrix accumulation is linked to inhibition of the plasmin protease system. Kidney Int. 1992 Dec;42(6):1462–1469. doi: 10.1038/ki.1992.442. [DOI] [PubMed] [Google Scholar]
  50. Weinberg J. B., Granger D. L., Pisetsky D. S., Seldin M. F., Misukonis M. A., Mason S. N., Pippen A. M., Ruiz P., Wood E. R., Gilkeson G. S. The role of nitric oxide in the pathogenesis of spontaneous murine autoimmune disease: increased nitric oxide production and nitric oxide synthase expression in MRL-lpr/lpr mice, and reduction of spontaneous glomerulonephritis and arthritis by orally administered NG-monomethyl-L-arginine. J Exp Med. 1994 Feb 1;179(2):651–660. doi: 10.1084/jem.179.2.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yamamoto T., Wilson C. B. Quantitative and qualitative studies of antibody-induced mesangial cell damage in the rat. Kidney Int. 1987 Oct;32(4):514–525. doi: 10.1038/ki.1987.240. [DOI] [PubMed] [Google Scholar]
  52. Youngman L. D., Park J. Y., Ames B. N. Protein oxidation associated with aging is reduced by dietary restriction of protein or calories. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9112–9116. doi: 10.1073/pnas.89.19.9112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Zeller K., Whittaker E., Sullivan L., Raskin P., Jacobson H. R. Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N Engl J Med. 1991 Jan 10;324(2):78–84. doi: 10.1056/NEJM199101103240202. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES