Abstract
The present study was undertaken to define the 5' and 3' regulatory sequences of human von Willebrand factor gene that confer tissue-specific expression in vivo. Transgenic mice were generated bearing a chimeric construct that included 487 bp of 5' flanking sequence and the first exon fused in-frame to the Escherichia coli lacZ gene. In situ histochemical analyses in independent lines demonstrated that the von Willebrand factor promoter targeted expression of LacZ to a subpopulation of endothelial cells in the yolk sac and adult brain. LacZ activity was absent in the vascular beds of the spleen, lung, liver, kidney, testes, heart, and aorta, as well as in megakaryocytes. In contrast, in mice containing the lacZ gene targeted to the thrombomodulin locus, the 5-bromo-4-chloro-3-indolyl beta-D-galactopyranoside reaction product was detected throughout the vascular tree. These data highlight the existence of regional differences in endothelial cell gene regulation and suggest that the 733-bp von Willebrand factor promoter may be useful as a molecular marker to investigate endothelial cell diversity.
Full text
PDF![4567](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb2c/41985/96a39e99e8a4/pnas01486-0503.png)
![4568](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb2c/41985/78594bb6c28a/pnas01486-0504.png)
![4569](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb2c/41985/4bba3ba807c8/pnas01486-0505.png)
![4570](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb2c/41985/f920d1b17f6e/pnas01486-0506.png)
![4571](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb2c/41985/db58663beb6b/pnas01486-0507.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bahnak B. R., Wu Q. Y., Coulombel L., Assouline Z., Kerbiriou-Nabias D., Piétu G., Drouet L., Caen J. P., Meyer D. Expression of von Willebrand factor in porcine vessels: heterogeneity at the level of von Willebrand factor mRNA. J Cell Physiol. 1989 Feb;138(2):305–310. doi: 10.1002/jcp.1041380212. [DOI] [PubMed] [Google Scholar]
- Beck D. W., Vinters H. V., Hart M. N., Cancilla P. A. Glial cells influence polarity of the blood-brain barrier. J Neuropathol Exp Neurol. 1984 May;43(3):219–224. doi: 10.1097/00005072-198405000-00001. [DOI] [PubMed] [Google Scholar]
- Berg E. L., Goldstein L. A., Jutila M. A., Nakache M., Picker L. J., Streeter P. R., Wu N. W., Zhou D., Butcher E. C. Homing receptors and vascular addressins: cell adhesion molecules that direct lymphocyte traffic. Immunol Rev. 1989 Apr;108:5–18. doi: 10.1111/j.1600-065x.1989.tb00010.x. [DOI] [PubMed] [Google Scholar]
- Bonthron D., Orkin S. H. The human von Willebrand factor gene. Structure of the 5' region. Eur J Biochem. 1988 Jan 15;171(1-2):51–57. doi: 10.1111/j.1432-1033.1988.tb13757.x. [DOI] [PubMed] [Google Scholar]
- Bradbury M. W. The blood-brain barrier. Exp Physiol. 1993 Jul;78(4):453–472. doi: 10.1113/expphysiol.1993.sp003698. [DOI] [PubMed] [Google Scholar]
- Coffin J. D., Harrison J., Schwartz S., Heimark R. Angioblast differentiation and morphogenesis of the vascular endothelium in the mouse embryo. Dev Biol. 1991 Nov;148(1):51–62. doi: 10.1016/0012-1606(91)90316-u. [DOI] [PubMed] [Google Scholar]
- DeFouw D. O. Structural heterogeneity within the pulmonary microcirculation of the normal rat. Anat Rec. 1988 Jun;221(2):645–654. doi: 10.1002/ar.1092210210. [DOI] [PubMed] [Google Scholar]
- Dumont D. J., Gradwohl G., Fong G. H., Puri M. C., Gertsenstein M., Auerbach A., Breitman M. L. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 1994 Aug 15;8(16):1897–1909. doi: 10.1101/gad.8.16.1897. [DOI] [PubMed] [Google Scholar]
- Ferreira V., Assouline Z., Schwachtgen J. L., Bahnak B. R., Meyer D., Kerbiriou-Nabias D. The role of the 5'-flanking region in the cell-specific transcription of the human von Willebrand factor gene. Biochem J. 1993 Aug 1;293(Pt 3):641–648. doi: 10.1042/bj2930641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleming S., Jones D. B. Antigenic heterogeneity of renal endothelium. J Pathol. 1989 Aug;158(4):319–323. doi: 10.1002/path.1711580409. [DOI] [PubMed] [Google Scholar]
- Gerritsen M. E., Bloor C. M. Endothelial cell gene expression in response to injury. FASEB J. 1993 Apr 1;7(6):523–532. doi: 10.1096/fasebj.7.6.8472891. [DOI] [PubMed] [Google Scholar]
- Gerritsen M. E. Functional heterogeneity of vascular endothelial cells. Biochem Pharmacol. 1987 Sep 1;36(17):2701–2711. doi: 10.1016/0006-2952(87)90252-8. [DOI] [PubMed] [Google Scholar]
- Hanna Z., Simard C., Laperrière A., Jolicoeur P. Specific expression of the human CD4 gene in mature CD4+ CD8- and immature CD4+ CD8+ T cells and in macrophages of transgenic mice. Mol Cell Biol. 1994 Feb;14(2):1084–1094. doi: 10.1128/mcb.14.2.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jahroudi N., Lynch D. C. Endothelial-cell-specific regulation of von Willebrand factor gene expression. Mol Cell Biol. 1994 Feb;14(2):999–1008. doi: 10.1128/mcb.14.2.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janzer R. C., Raff M. C. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature. 1987 Jan 15;325(6101):253–257. doi: 10.1038/325253a0. [DOI] [PubMed] [Google Scholar]
- Johnson J. E., Wold B. J., Hauschka S. D. Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Mol Cell Biol. 1989 Aug;9(8):3393–3399. doi: 10.1128/mcb.9.8.3393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar S., West D. C., Ager A. Heterogeneity in endothelial cells from large vessels and microvessels. Differentiation. 1987;36(1):57–70. doi: 10.1111/j.1432-0436.1987.tb00181.x. [DOI] [PubMed] [Google Scholar]
- Liska D. J., Reed M. J., Sage E. H., Bornstein P. Cell-specific expression of alpha 1(I) collagen-hGH minigenes in transgenic mice. J Cell Biol. 1994 May;125(3):695–704. doi: 10.1083/jcb.125.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lobrinus J. A., Juillerat-Jeanneret L., Darekar P., Schlosshauer B., Janzer R. C. Induction of the blood-brain barrier specific HT7 and neurothelin epitopes in endothelial cells of the chick chorioallantoic vessels by a soluble factor derived from astrocytes. Brain Res Dev Brain Res. 1992 Dec 18;70(2):207–211. doi: 10.1016/0165-3806(92)90199-7. [DOI] [PubMed] [Google Scholar]
- Maxwell K., Berliner J. A., Cancilla P. A. Induction of gamma-glutamyl transpeptidase in cultured cerebral endothelial cells by a product released by astrocytes. Brain Res. 1987 May 5;410(2):309–314. doi: 10.1016/0006-8993(87)90329-5. [DOI] [PubMed] [Google Scholar]
- Noden D. M. Origins and assembly of avian embryonic blood vessels. Ann N Y Acad Sci. 1990;588:236–249. doi: 10.1111/j.1749-6632.1990.tb13214.x. [DOI] [PubMed] [Google Scholar]
- Page C., Rose M., Yacoub M., Pigott R. Antigenic heterogeneity of vascular endothelium. Am J Pathol. 1992 Sep;141(3):673–683. [PMC free article] [PubMed] [Google Scholar]
- Peters K. G., De Vries C., Williams L. T. Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8915–8919. doi: 10.1073/pnas.90.19.8915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poole T. J., Coffin J. D. Vasculogenesis and angiogenesis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. J Exp Zool. 1989 Aug;251(2):224–231. doi: 10.1002/jez.1402510210. [DOI] [PubMed] [Google Scholar]
- Rand J. H., Badimon L., Gordon R. E., Uson R. R., Fuster V. Distribution of von Willebrand factor in porcine intima varies with blood vessel type and location. Arteriosclerosis. 1987 May-Jun;7(3):287–291. doi: 10.1161/01.atv.7.3.287. [DOI] [PubMed] [Google Scholar]
- Ruggeri Z. M., Ware J. von Willebrand factor. FASEB J. 1993 Feb 1;7(2):308–316. doi: 10.1096/fasebj.7.2.8440408. [DOI] [PubMed] [Google Scholar]
- Sadler J. E. von Willebrand factor. J Biol Chem. 1991 Dec 5;266(34):22777–22780. [PubMed] [Google Scholar]
- Sato T. N., Qin Y., Kozak C. A., Audus K. L. Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9355–9358. doi: 10.1073/pnas.90.20.9355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlosshauer B. The blood-brain barrier: morphology, molecules, and neurothelin. Bioessays. 1993 May;15(5):341–346. doi: 10.1002/bies.950150508. [DOI] [PubMed] [Google Scholar]
- Stewart P. A., Wiley M. J. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail--chick transplantation chimeras. Dev Biol. 1981 May;84(1):183–192. doi: 10.1016/0012-1606(81)90382-1. [DOI] [PubMed] [Google Scholar]
- Streeter P. R., Berg E. L., Rouse B. T., Bargatze R. F., Butcher E. C. A tissue-specific endothelial cell molecule involved in lymphocyte homing. Nature. 1988 Jan 7;331(6151):41–46. doi: 10.1038/331041a0. [DOI] [PubMed] [Google Scholar]
- Tao-Cheng J. H., Nagy Z., Brightman M. W. Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci. 1987 Oct;7(10):3293–3299. doi: 10.1523/JNEUROSCI.07-10-03293.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomlinson A., Van Vlijmen H., Loesch A., Burnstock G. An immunohistochemical study of endothelial cell heterogeneity in the rat: observations in "en face" Häutchen preparations. Cell Tissue Res. 1991 Jan;263(1):173–181. doi: 10.1007/BF00318413. [DOI] [PubMed] [Google Scholar]
- Turner R. R., Beckstead J. H., Warnke R. A., Wood G. S. Endothelial cell phenotypic diversity. In situ demonstration of immunologic and enzymatic heterogeneity that correlates with specific morphologic subtypes. Am J Clin Pathol. 1987 May;87(5):569–575. doi: 10.1093/ajcp/87.5.569. [DOI] [PubMed] [Google Scholar]
- Wang R., Clark R., Bautch V. L. Embryonic stem cell-derived cystic embryoid bodies form vascular channels: an in vitro model of blood vessel development. Development. 1992 Feb;114(2):303–316. doi: 10.1242/dev.114.2.303. [DOI] [PubMed] [Google Scholar]
- Wu Q. Y., Drouet L., Carrier J. L., Rothschild C., Berard M., Rouault C., Caen J. P., Meyer D. Differential distribution of von Willebrand factor in endothelial cells. Comparison between normal pigs and pigs with von Willebrand disease. Arteriosclerosis. 1987 Jan-Feb;7(1):47–54. doi: 10.1161/01.atv.7.1.47. [DOI] [PubMed] [Google Scholar]
- Yamaguchi T. P., Dumont D. J., Conlon R. A., Breitman M. L., Rossant J. flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development. 1993 Jun;118(2):489–498. doi: 10.1242/dev.118.2.489. [DOI] [PubMed] [Google Scholar]