Skip to main content
Jornal Brasileiro de Pneumologia logoLink to Jornal Brasileiro de Pneumologia
. 2014 Jul-Aug;40(4):411–420. doi: 10.1590/S1806-37132014000400009
View full-text in Portuguese

Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle*,**

Samanta Portão de Carlos 1, Alexandre Simões Dias 2, Luiz Alberto Forgiarini Júnior 3, Patrícia Damiani Patricio 4, Thaise Graciano 5, Renata Tiscoski Nesi 6, Samuel Valença 7, Adriana Meira Guntzel Chiappa 8, Gerson Cipriano Jr 9, Claudio Teodoro de Souza 10, Gaspar Rogério da Silva Chiappa 11
PMCID: PMC4201172  PMID: 25210964

Abstract

OBJECTIVE:

To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation) and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively]) in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS) for 7, 15, 30, 45, or 60 days.

METHODS:

Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group): a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively.

RESULTS:

Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice), the greatest differences (increases) in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases) in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle.

CONCLUSION:

Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily) in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD.

Keywords: Oxidative stress, Mice, Respiratory system, Smoking, Inflammation

Introduction

Cigarette smoke (CS) contains a large number of oxidants that have adverse effects on tissues through oxidative damage.( 1 , 2 ) It is known that CS activates inflammatory cells, which can also increase polymorphonuclear cell production of oxidants in tissues, triggering oxidative stress, a crucial step in the pathogenesis of CS-induced tissue damage.( 3 - 6 ) The combined effects of greater proteolytic damage, increased cell death, and decreased lung remodeling leads to emphysematous changes in the lungs.( 7 ) Studies have shown that, in the blood of smokers,( 8 , 9 ) as well as in various organs of animals chronically exposed to CS,( 10 ) there are increases in lipid peroxidation, protein carbonylation, thiol oxidation, and DNA oxidization.

There is evidence that two central factors are involved in CS-induced direct injury or systemic inflammation: phosphorylated AMP-activated protein kinase and phosphorylated mammalian target of rapamycin (p-AMPK and p-mTOR, respectively). One recent study showed that p-AMPK activation inhibits or promotes inflammation, depending on the stimulus.( 11 ) There is also increasing evidence that, in many cell types, an increase in intracellular reactive oxygen species (ROS) can activate p-AMPK. ( 12 ) A major integrator of environmental cues, mTOR controls cellular metabolism, growth, proliferation, and survival depending on mitogenic signals, as well as on the availability of nutrients and energy. It has now become clear that mTOR signaling plays a central role in regulating basic aspects of cell and organism behavior, and its dysregulation is strongly associated with progression of numerous human proliferative and metabolic diseases, including cancer, obesity, type 2 diabetes, and hamartoma syndrome.( 13 )

It is of great importance to elucidate the possible oxidative damage induced by CS directly in skeletal muscle, as well as the related structural abnormalities and the direct relationship between p-AMPK and p-mTOR, two factors associated with inflammation. Therefore, the aim of this animal study was to evaluate oxidative damage and inflammation in the lung parenchyma and diaphragm after 7, 15, 30, 45, and 60 days of exposure to CS.

Methods

In this study, we used 36 two-month-old male C57BL/6 mice weighing 30-35 g. The animals were used and cared for in accordance with European Communities Council Directive 86/609/EEC of 24 November, 1986. The procedures adopted in this study were approved by the Research Ethics Committee of the University of Southern Santa Catarina, in the city of Criciúma, Brazil. The mice were housed in a temperature- and humidity-controlled environment (70% humidity; 20 ± 2°C), on a 12/12-h light/dark cycle, and were given ad libitum access to water and chow (Nuvilab CR1; Nuvital Nutrientes Ltda., Colombo, Brazil). The animals were checked periodically in order to verify that they remained pathogen-free. For biochemical assays, the mice were randomized into six groups (n = 6/group): a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days (designated CS-7, CS-15, CS-30, CS-45, and CS-60, respectively).

We used commercial filter cigarettes (MarlboroTM Red, 8 mg of tar and 0.6 mg of nicotine per cigarette; Philip Morris Products, Richmond, VA, USA).( 14 , 15 ) Study animals were exposed to the smoke emitted from the burning of 12 cigarettes per day for 7, 15, 30, 45, and 60 days, as described previously by Menegali et al.( 3 ) In brief, animals were placed in a covered inhalation chamber (40 cm long, 30 cm wide, and 25 cm high), positioned under an exhaust hood. A cigarette was coupled to a plastic 60-mL syringe so that each puff could be drawn in and subsequently expelled into the exposure chamber. One liter of smoke (20 puffs of 50 mL) was aspirated from each cigarette, each puff being immediately injected into the inhalation chamber. The animals were maintained in this smoke-air condition (3% smoke) for 6 min. We then removed the cover from the inhalation chamber and turned on the exhaust hood, which evacuated the smoke within 60 s. This process was immediately repeated. A total of four cigarettes were thus "smoked" in each treatment. The mice were subjected to these four-cigarette treatments three times per day (morning, noon, and afternoon), resulting in 72 min of CS exposure (12 cigarettes per day). ( 16 ) Each cigarette smoked produced 300 mg/m3 of total particulate matter in the exposure chamber.( 3 ) The animals were sacrificed by cervical dislocation at 24 h after the final CS exposure. Samples of lung tissue and diaphragm muscle were homogenized in buffer solution. The homogenates were centrifuged at 1000 × g for 10 min at 4°C, and the supernatants were stored at −70°C for subsequent use in the experiments.

For histological analysis, were selected all animals in each group. The right ventricle was perfused with sterile saline (0.9%) to remove blood from the lung. The right lung was fixed (by gentle infusion of 4% phosphate buffered formalin (pH 7.2) at 25 cmH2O for 2 min through a tracheal catheter), after which it was removed and weighed. Inflated lungs were fixed for 48 h and then embedded in paraffin. Serial sagittal sections (5-µm) were obtained for histological and morphometric analyses. Macrophages and neutrophils were quantified in the alveoli. For each group, were analyzed 30 microscopic fields (10 random fields, of 26,000 mm2 each, in 3 different sections of the right lung). The number of macrophages and neutrophils (cells/mm2) were counted in a fluorescence microscope (BH-2; Olympus, Tokyo, Japan) equipped with a 40× objective.( 3 )

Oxidative damage was evaluated by quantifying sulfhydryl content, protein carbonyls, and malondialdehyde. Total thiol content was determined using the 5,50-dithiobis (2-nitrobenzoic acid)-DTNB-method (Sigma, St. Louis, MO, USA). The conditions of the DTNB test were as previously described.( 17 ) In brief, 30 µL of a sample was mixed with 1 mL of PBS and 1 mM of EDTA (pH 7.5). The reaction was started by the addition of 30 µL of 10 mM DTNB stock solution in PBS. Control samples, which did not include DTNB or protein, were run simultaneously. After 30 min of incubation at room temperature, the absorbance was read at 412 nm and the amounts of 5-thio-2-nitrobenzoic acid (TNB) formed (equivalent to the amount of sulfhydryl groups) were measured. Protein carbonyls were determined using the 2,4-dinitrophenylhydrazine (DNPH) spectrophotometry method, as described by Levine et al.( 18 ) In brief, samples containing either 2 N hydrochloric acid or DNPH were passed through columns containing Sephadex G-10 and rinsed with 2 N hydrochloric acid. The effluent was collected and mixed with guanidine hydrochloride, after which the absorbance determined at 360 nm in a spectrophotometer (SP 1105; Shanghai Spectrum Instruments Co., Ltd., Shanghai, China). The difference in absorbance with and without DNPH was calculated for all samples. Values are expressed as molar quantities using the extinction coefficient 22,000 [M-1]. Malondialdehyde, an important indicator of lipid peroxidation, was determined by spectrophotometry of the pink-colored product of thiobarbituric acid-reactive substances (TBARS). Total TBARS, as a proxy for lipid peroxidation (malondialdehyde levels), are expressed as mmol/mg of protein.( 19 )

Western blotting, the lung homogenates were prepared from the frozen lungs using a tissue lysis buffer (50 mM TRIS, pH 8.0, 5 mM EDTA, 150 mM NaCl, 1% nonionic detergent, 0.5% sodium deoxycholate, and 0.1% sodium dodecyl sulfate) and a protease inhibitor cocktail (Sigma). The lysates were clarified by centrifugation at 13,000 g for 15 min at 4°C; 10-30 g of protein were separated by SDS-PAGE on 10% or 15% gels; and p-AMPK and p-mTOR expression (antibodies from Cell Signaling Biotechnology, Boston, MA, USA) was analyzed by immunoblot analysis. Immunoreactivity was detected by enhanced chemiluminescence (ECL; Amersham Biosciences, Buckinghamshire, UK). The band density was determined using an imaging densitometer and analyzed with the accompanying software (GS-700 and Quantity One; Bio-Rad Laboratories, Hercules, CA, USA).( 20 )

Data are expressed as mean ± standard error of the mean. To compare means between and among groups, we used one-way ANOVA followed by Tukey's honestly significant difference post-hoc test for multiple comparisons. The level of significance was set at p < 0.05. The software used for analysis of the data was the Statistical Package for the Social Sciences, version 18.0 for Windows (SPSS Inc., Chicago, IL, USA). The sample size was based on previous studies performed in our laboratory,( 3 ) in which similar approaches were employed.

Results

Among the mice evaluated in the present study, the survival rate was 100%. In comparison with the baseline values, the body weights of the animals decreased after 30, 45, and 60 days of CS exposure (27 ± 1 vs. 23 ± 0.8 g; p <0.01, 26 ± 0.5 vs. 22 ± 0.4 g; p < 0.01, and 25 ± 0.7 vs. 20 ± 0.3 g; p < 0.001, respectively). In addition, the body weights of the CS-60 group mice were significantly lower than were those of the control mice, as well as being significantly lower than were those of the CS-30 and CS-45 group mice (p < 0.001 for all).

In the histological analysis, lung tissue samples obtained from control mice showed thin alveolar septa and normal alveoli, whereas those obtained from mice that were exposed to CS showed destruction of the alveolar septa (starting on day 15 of exposure), alveolar enlargement, and the presence of alveolar macrophages (Figure 1A). The alveolar enlargement was significantly greater in the CS-45 group (Figure 1A). As shown in Figure 1B, the numbers of macrophages and neutrophils in the CS groups both increased significantly (in comparison with those observed for the control group) by day 7 of exposure to CS (p < 0.01). However, the difference in the number of neutrophils was more pronounced after 45 days of exposure (p < 0.001).

Figure 1. In A, photomicrographs of lung tissue samples obtained from mice exposed to cigarette smoke, showing enlarged airspaces (EAs) resulting from alveolar consolidation during the development of pulmonary emphysema (magnification, ×40): a, control group; b, 7-day exposure group; c, 15-day exposure group; d, 30-day exposure group; e, 45-day exposure group; and f, 60-day exposure group. In B, Mean ± SEM of macrophages and neutrophils (cells/mm2). *p < 0.001 vs. control for macrophages. †p < 0.001 vs. control for neutrophils. ‡p < 0.001 vs. baseline for neutrophils.

Figure 1

Figures 2, 3, and 4, respectively, show lipid peroxidation, protein carbonyls and sulfhydryl content in lung tissue samples and diaphragm muscle samples. In both tissue types, total TBARS increased after 7 days of exposure to CS, as did carbonyl levels. In the CS-7, CS-15, and CS-45 groups, there were differences between the lung tissue samples and diaphragm muscle samples, in terms of the degree to which carbonyl levels were increased. In the CS-15 group, the levels of TNB were significantly lower in lung tissue than in diaphragm muscle. However, by day 7 of CS exposure, TNB levels were lower than the control values in both tissue types.

Figure 2. Mean ± SEM of thiobarbituric acid-reactive substances (TBARS) in lung tissue and diaphragm muscle in six groups of mice: a control group; and five groups exposed to cigarette smoke for 7, 15, 30, 45, and 60 days, respectively. *p < 0.05 vs. control in lung tissue. † p < 0.05 vs. control in diaphragm muscle. ‡ p < 0.05 vs. lung tissue.

Figure 2

Figure 3. Mean ± SEM of carbonyl in lung tissue and diaphragm muscle in six groups of mice: a control group; and five groups exposed to cigarette smoke for 7, 15, 30, 45, and 60 days, respectively. * p < 0.05 vs. control in lung tissue. † p < 0.05 vs. control in diaphragm muscle. ‡ p < 0.05 vs. lung tissue.

Figure 3

Figure 4. Mean ± SEM of 5-thio-2-nitrobenzoic acid (TNB) in lung tissue and diaphragm muscle in six groups of mice: a control group; and five groups exposed to cigarette smoke for 7, 15, 30, 45, and 60 days, respectively. * p < 0.05 vs. control in lung tissue. † p < 0.05 vs. control in diaphragm muscle. ‡ p < 0.05 vs. lung tissue.

Figure 4

The lung expression of p-AMPK was higher in the CS-15 group than in the CS-7 group. Notably, in the CS-30 and CS-45 groups, p-AMPK expression was higher in diaphragm muscle than in lung tissue (Figure 5). From day 7 of CS exposure onward, the lung expression of p-mTOR was lower in all CS-exposed groups than in the control group. However, that difference was most pronounced in the CS-7 and CS-45 groups. In the diaphragm muscle samples, p-mTOR expression began to increase by day 15 of CS, peaking by day 45 (Figure 5).

Figure 5. In A and B, mean ± SEM for phosphorylated AMP-activated protein kinase (p-AMPK) expression in lung tissue and diaphragm muscle, respectively. In C and D, mean ± SEM for phosphorylated mammalian target of rapamycin (p-mTOR) expression in lung tissue and diaphragm muscle, respectively. Data are related to six groups of mice: a control group; and five groups exposed to cigarette smoke for 7, 15, 30, 45, and 60 days, respectively. *p < 0.01 vs. control. †p < 0.001 vs. control.

Figure 5

Discussion

In the present study, our main objective was to characterize, at different time points, the effects induced by exposure to CS. The principal effects observed were by oxidative damage in diaphragm muscle and morphological changes in lung tissue.

The amount of neutrophils, which is associated with oxidative damage in lung tissue, was greatest on day 45 of exposure to CS. The numbers of macrophages and neutrophils are high in patients with COPD, having a direct relationship with disease severity.( 21 ) Our data demonstrate increases in leukocytes, including macrophages and neutrophils, from day 7 to day 45 of CS exposure, which might be related to increased cell numbers and cell proliferation, resulting in immune response activation.( 22 ) As observed, we confirmed that CS-induced pulmonary alterations appear to be the consequence of a primary inflammatory lesion characterized by the accumulation of alveolar macrophages and neutrophils in the lower respiratory tract as an immune response, which is crucial in inflammatory disease.( 23 ) It is known that ROS play an important role in the inflammatory response to CS. Oxidative stress is characterized by higher production of ROS and decreased antioxidant levels with lipid peroxidation, thiol alterations and protein carbonylation in plasma.( 24 )

Pulmonary emphysema is associated with intense responses in oxidative stress, which result in a direct relationship between systemic defense activity and oxidative damage.( 25 , 26 ) The oxidative damage and inflammation in lung tissue after exposure to CS have been widely studied. In addition, according to MacNee,( 27 ) oxidative stress, as quantified by measuring plasma levels of TBARS, is associated with airflow limitation. The airflow alterations play a role in the function of respiratory muscles like the diaphragm. However, our findings demonstrate that there is an increased intensity of the inflammatory response in lung tissue starting after day 45 of exposure to CS.

According to Park et al.,( 10 ) exposure to CS for 30 days causes significant oxidation and depletion of the glutathione pool in the lung. Those authors also concluded that the lung is a primary target of oxidative damage by cigarette smoking in the early stages, and that CS eventually exerts its oxidative effects on all organs. In our study, it was observed that CS-induced oxidative damage caused changes not only in the lungs but also in the diaphragm. We found that exposure to CS for 30-45 days was sufficient to generate higher levels of oxidative damage in skeletal muscle (the diaphragm).

A recent study showed that the main limitation found in COPD patients might be related to the mechanism of slow cardiac output associated with airflow limitation.( 28 ) Chiappa et al.( 29 ) tested conditions that improve oxygen delivery and uptake as strategies in COPD patients. The authors demonstrated that one such strategy-the use of heliox (a mixture of 79% helium and 21% oxygen)-is able to ameliorate expiratory flow limitation and dynamic hyperinflation, accelerating the dynamics of peripheral muscle utilization of oxygen as a consequence of improved delivery during high-intensity exercise in patients with moderate to severe COPD. We believed that these interactions might be linked with redox balance and inflammatory responses. One recent study suggested that, in the clinical management of acute lung injury, the use of heliox has the combined therapeutic benefits of reducing mechanical and oxidative stress, thus attenuating lung inflammation.( 30 )

Oxidative damage generated by exposure to CS in skeletal muscle can lead to loss of muscle function, manifesting as a loss of muscle strength and a consequent higher susceptibility to fatigue. ( 1 , 31 ) The present investigation is the first to provide evidence of oxidative changes induced by ROS in diaphragm muscle proteins in animals chronically exposed to CS. We found that protein oxidation was significantly increased in the diaphragm after 7 days of exposure to CS. The carbonylation of the diaphragm was highest after 30-45 days of exposure, as opposed to carbonylation in the lung, which did not peak until day 60. Our data indicate that exposure to CS primarily affects the diaphragm, which can translate to a significant loss of locomotor and respiratory muscle function in pulmonary emphysema.

According to Barreiro et al.,( 1 ) the effects of smoking-induced muscle protein oxidation appear at an earlier stage in the quadriceps muscle than in the respiratory muscles. These findings underscore the concept that CS per se is likely to be involved in direct tissue toxicity in the skeletal muscles of CS-exposed mice, regardless of lung and bronchial alterations. In addition, we observed that the same animals acutely exposed to CS exhibited a significant increase in TBARS, together with a reduction in muscle levels of sulfhydryl, immediately after exposure. Carbonylation is crucial to triggering activation of the oxidative pathway and promoting lipid peroxidation.

In this animal study of chronic CS exposure, we have shown that pulmonary function decreases in parallel with the duration of exposure, similar to what has been observed in humans.( 32 ) In addition, chronic CS exposure has been shown to cause airflow obstruction.( 33 ) When we analyzed the expression of p-AMPK and p-mTOR in lung tissue, we observed decreased expression of p-mTOR, a result that was expected because p-mTOR expression is associated with cell metabolism, growth, proliferation, and survival, depending on mitogenic signals, as well as on the availability of nutrients and energy.

The increased expression of p-mTOR observed in the diaphragm from day 15 to day 45 of CS exposure can be explained by the possible increase in muscle protein synthesis related to a state of physiological stress.( 34 ) In a rat model of CS exposure, Kozma et al.( 5 ) demonstrated that airway resistance and respiratory system resistance were higher in exposed animals than in unexposed animals. This increase in airway resistance might result in a greater diaphragmatic work, which would explain the increased diaphragm expression of p-mTOR in our CS-15, CS-30, and CS-45 groups, given that p-mTOR expression is known to be elevated in situations of muscle hypertrophy. ( 35 ) In our CS-60 group, there was a significant reduction in p-mTOR expression, which was an expected result, because myopathy is associated with reduced expression of p-mTOR.( 36 ) Such myopathy is common in chronic lung diseases.( 1 ) However, in our study, the expression of p-AMPK was increased only from day 30 to day 45 of CS exposure. This fact might be explained by the fact that the increased p-AMPK expression was accompanied by an increase in oxidative stress, which is clear when we look at the increase in carbonyl by day 30 of CS exposure. Increasing evidence suggests that p-AMPK can be activated by an increase in intracellular ROS in many cell types.( 12 ) Accordingly, whether the ROS-sensitive p-AMPK signaling pathway is involved in toxic smoke-induced lung inflammation remains to be investigated.

Perang et al.( 37 ) were the first to report a detailed AMPK signaling pathway responsible for inducing interleukin (IL)-8 expression by toxic smoke exposure in lung epithelial cells. In this pathway, increased intracellular levels of ROS level constitute the vital trigger, because removal of intracellular ROS by N-acetyl-cysteine reduced the activation of AMPK, c-Jun N-terminal kinase, and extracellular signal-regulated kinase, as well as the induction of IL-8.( 37 ) Previous studies have reported that toxic smoke can increase the intracellular ROS level in lung cells, although the mechanism remains unclear.( 38 )

In conclusion, our study shows, for the first time, that oxidative alterations in muscle proteins occur in the diaphragm as early as day 7 days of exposure to CS. In addition, this event occurred concomitantly with the parenchymal abnormalities induced by CS in the lungs, suggesting a direct toxic effect of CS on skeletal muscle proteins. However, our data also make it more obvious that pulmonary emphysema is a complex disease that has a negative impact on the whole body. Furthermore, we found that the oxidative damage caused by CS exposure occurs first in skeletal muscle and then in lung tissue.

Acknowledgements

We are grateful to our colleagues in the Laboratory of Exercise Biochemistry and Physiology at the University of Southern Santa Catarina, in Criciuma, Brazil, for their collaboration.

Footnotes

Financial support: This study received financial support from the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, National Council for Scientific and Technological Development), the Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC, Foundation for the Support of Research and Innovation in the state of Santa Catarina), and the Universidade do Extremo Sul de Santa Catarina (UNESC, University of Southern Santa Catarina).

*

Study carried out in the Laboratory for Research in the Physiopathology of Exercise, Porto Alegre Hospital de Clínicas, Porto Alegre, Brazil.

**

A versão completa em português deste artigo está disponível em www.jornaldepneumologia.com.br

Contributor Information

Samanta Portão de Carlos, Department of Physical Therapy. University of Southern Santa Catarina, Criciúma, Brazil.

Alexandre Simões Dias, Graduate Program in Movement Sciences and Pulmonology Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.

Luiz Alberto Forgiarini, Júnior, Methodist University, Instituto Porto Alegre (IPA, Porto Alegre Institute), Porto Alegre, Brazil.

Patrícia Damiani Patricio, Department of Physical Therapy. University of Southern Santa Catarina, Criciúma, Brazil.

Thaise Graciano, Department of Physical Therapy. University of Southern Santa Catarina, Criciúma, Brazil.

Renata Tiscoski Nesi, Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

Samuel Valença, Laboratory for Research in the Physiopathology of Exercise, Department of Cardiology, Porto Alegre Hospital de Clínicas, Porto Alegre, Brazil.

Adriana Meira Guntzel Chiappa, Intensive Care Unit, Porto Alegre Hospital de Clínicas, Porto Alegre, Brazil.

Gerson Cipriano, Jr, Health Sciences and Technologies Program, Department of Physical Therapy, University of Brasília, Brasília, Brazil.

Claudio Teodoro de Souza, Department of Physical Therapy. University of Southern Santa Catarina, Criciúma, Brazil.

Gaspar Rogério da Silva Chiappa, Laboratory for Research in the Physiopathology of Exercise, Department of Cardiology, Porto Alegre Hospital de Clínicas, Porto Alegre, Brazil; and Epidemiology and Public Health Research Group, Serra Gaucha College, Caxias do Sul, Brazil.

References

J Bras Pneumol. 2014 Jul-Aug;40(4):411–420. [Article in Portuguese]

Dano oxidativo induzido por exposição a fumaça de cigarro em camundongos: impacto sobre o pulmão e o músculo diafragma*

Samanta Portão de Carlos 1, Alexandre Simões Dias 2, Luiz Alberto Forgiarini Júnior 3, Patrícia Damiani Patricio 4, Thaise Graciano 5, Renata Tiscoski Nesi 6, Samuel Valença 7, Adriana Meira Guntzel Chiappa 8, Gerson Cipriano Jr 9, Claudio Teodoro de Souza 10, Gaspar Rogério da Silva Chiappa 11

Abstract

OBJETIVO:

Avaliar o dano oxidativo (oxidação lipídica, oxidação proteica, thiobarbituric acid-reactive substances [TBARS, substâncias reativas ao ácido tiobarbitúrico], e carbonilação) e inflamação (expressão de phosphorylated AMP-activated protein kinase e de phosphorylated mammalian target of rapamycin (p-AMPK e p-mTOR, respectivamente) em tecido pulmonar e músculos do diafragma em camundongos C57BL/6 machos expostos à fumaça de cigarro (FC) por 7, 15, 30, 45 ou 60 dias.

MÉTODOS:

Trinta e seis camundongos machos da espécie C57BL/6 foram divididos em seis grupos (n = 6/grupo): grupo controle e 5 grupos expostos a FC por 7, 15, 30, 45 e 60 dias, respectivamente.

RESULTADOS:

Comparados aos camundongos controle, os camundongos expostos à FC apresentaram menor peso corporal em 30 dias. Nos camundongos expostos à FC (comparados aos controle) as maiores diferenças (aumentos) nos níveis de TBARS foram observados no dia 7 no músculo diafragma, comparado ao dia 45 em tecido pulmonar; as maiores diferenças (aumentos) nos níveis de carbonilas foram observados no dia 7 em ambos os tipos de tecido; e os níveis de sulfidrilas foram menores, nos dois tipos de tecidos, em todos os tempos. No tecido pulmonar e no músculo diafragma, a expressão de p-AMPK exibiu um comportamento semelhante ao dos níveis de TBARS. A expressão de p-mTOR foi maior que o valor controle nos dias 7 e 15 no tecido pulmonar, assim como no dia 45 no músculo diafragma.

CONCLUSÕES:

Nossos dados demonstram que a exposição à FC produz dano oxidativo tanto no tecido pulmonar quanto (primariamente) no tecido muscular, tendo um efeito adicional no músculo respiratório, como é frequentemente observado em fumantes com DPOC.

Keywords: Estresse oxidativo, Camundongos, Sistema respiratório, Poluição por fumaça de tabaco, Inflamação

Introdução

A fumaça de cigarro (FC) contém um grande número de oxidantes que têm efeitos adversos sobre os tecidos por meio de dano oxidativo.( 1 , 2 ) Sabe-se que a FC ativa as células inflamatórias, o que pode também aumentar a produção de oxidantes por células polimorfonucleares nos tecidos, desencadeando o estresse oxidativo, etapa crucial na patogênese do dano tecidual induzido pela FC.( 3 - 6 ) Os efeitos combinados de aumento da degradação proteolítica, aumento da morte celular e redução do remodelamento pulmonar levam a alterações enfisematosas nos pulmões.( 7 ) Estudos mostraram que, no sangue de fumantes,( 8 , 9 ) bem como em vários órgãos de animais cronicamente expostos à FC,( 10 ) há aumentos da peroxidação lipídica, da carbonilação de proteínas, da oxidação de tióis e da oxidação do DNA.

Há evidências de que dois fatores centrais estão envolvidos na lesão direta ou inflamação sistêmica induzida pela FC: a phosphorylated AMP-activated protein kinase e o phosphorylated mammalian target of rapamycin (p-AMPK e p-mTOR, respectivamente). Um estudo recente mostrou que a ativação da p-AMPK inibe ou promove a inflamação, dependendo do estímulo. ( 11 ) Há também evidências crescentes de que, em muitos tipos de células, um aumento dos níveis intracelulares de espécies reativas de oxigênio (ERO) pode ativar a p-AMPK.( 12 ) O mTOR, que é um importante integrador de estímulos ambientais, controla o metabolismo, crescimento, proliferação e sobrevivência celulares, dependendo de sinais mitogênicos, bem como da disponibilidade de nutrientes e de energia. Recentemente ficou claro que a sinalização do mTOR desempenha um papel central na regulação de aspectos básicos do comportamento das células e do organismo, e sua desregulação associa-se fortemente à progressão de numerosas doenças humanas proliferativas e metabólicas, incluindo o câncer, a obesidade, o diabetes tipo 2 e a síndrome do hamartoma.( 13 )

É muito importante elucidar o possível dano oxidativo induzido pela FC diretamente no músculo esquelético, bem como as anormalidades estruturais relacionadas e a relação direta entre a p-AMPK e o p-mTOR, dois fatores associados à inflamação. Portanto, o objetivo deste estudo em animais foi avaliar o dano oxidativo e a inflamação no parênquima pulmonar e no músculo diafragma após 7, 15, 30, 45 e 60 dias de exposição à FC.

Métodos

Neste estudo, utilizamos 36 camundongos machos da espécie C57BL/6 com idade de dois meses e peso de 30-35 g. Os animais foram utilizados e cuidados de acordo com a Diretiva 86/609/CEE, de 24 de novembro de 1986, do Conselho das Comunidades Europeias. Os procedimentos adotados neste estudo foram aprovados pelo Comitê de Ética em Pesquisa da Universidade do Extremo Sul de Santa Catarina, localizada em Criciúma. Os camundongos foram mantidos em ambiente com temperatura e umidade controladas (umidade de 70%; 20 ± 2°C), em ciclo claro-escuro de 12 h, e tinham livre acesso a água e ração (Nuvilab CR1; Nuvital Nutrientes Ltda., Colombo, Brasil). Os animais foram verificados periodicamente para confirmar a ausência de patógenos. Para os ensaios bioquímicos, os camundongos foram divididos aleatoriamente em 6 grupos (n = 6/grupo): grupo controle e 5 grupos expostos a FC por 7, 15, 30, 45 e 60 dias (designados FC-7, FC-15, FC-30, FC-45 e FC-60, respectivamente).

Foram utilizados cigarros comerciais com filtro (MarlboroTM Red, 8 mg de alcatrão e 0,6 mg de nicotina por cigarro; Philip Morris Products, Richmond, VA, EUA).( 14 , 15 ) Os animais do estudo foram expostos à fumaça emitida pela queima de 12 cigarros ao dia por 7, 15, 30, 45 e 60 dias, conforme descrito anteriormente por Menegali et al.( 3 ) Em suma, os animais foram colocados em uma câmara de inalação coberta (40 cm de comprimento, 30 cm de largura e 25 cm de altura), posicionada sob um exaustor. Um cigarro foi acoplado a uma seringa plástica de 60 mL de modo que cada baforada pudesse ser colhida e em seguida expelida para a câmara de exposição. Um litro de fumaça (20 baforadas de 50 mL) foi aspirado de cada cigarro, sendo que cada baforada foi imediatamente injetada na câmara de inalação. Os animais foram mantidos nessa condição de fumaça-ar (3% de fumaça) por 6 min. Retirou-se então a tampa da câmara de inalação e ligou-se o exaustor, que evacuou a fumaça em 60 s. Esse processo foi imediatamente repetido. Um total de quatro cigarros foi assim "fumado" em cada tratamento. Os camundongos foram submetidos a esses tratamentos com 4 cigarros três vezes ao dia (manhã, meio-dia e tarde), resultando na exposição à FC por 72 min (12 cigarros por dia). ( 16 ) Cada cigarro fumado produziu 300 mg/m3 de particulados totais na câmara de exposição.( 3 ) Os animais foram sacrificados por deslocamento cervical 24 h após a última exposição à FC. As amostras de tecido pulmonar e do músculo diafragma foram homogeneizadas em tampão. Os homogeneizados foram centrifugados a 1000 × g por 10 min a 4°C, e os sobrenadantes foram armazenados a −70°C para posterior utilização nos experimentos.

Para a análise histológica, selecionaram-se todos os animais de cada grupo. O ventrículo direito foi submetido a perfusão com solução salina estéril (0,9%) a fim de remover o sangue do pulmão. O pulmão direito foi fixado (por infusão suave de formalina tamponada com fosfato a 4% [pH 7,2], a 25 cmH2O, por 2 min, através de cateter traqueal), após o que o mesmo foi retirado e pesado. Os pulmões inflados foram fixados por 48 h e então incluídos em parafina. Cortes seriados sagitais (5 µm) foram obtidos para as análises histológicas e morfométricas. Realizou-se a quantificação de macrófagos e neutrófilos nos alvéolos. Para cada grupo, foram analisados 30 campos microscópicos (10 campos aleatórios, de 26.000 mm2 cada, em 3 diferentes cortes do pulmão direito). A contagem do número de macrófagos e neutrófilos (células/mm2) foi realizada em um microscópio de fluorescência (BH-2; Olympus, Tóquio, Japão) equipado com objetiva de 40×.( 3 )

O dano oxidativo foi avaliado pela quantificação de sulfidrilas, carbonilas proteicas e malondialdeído. O conteúdo total de tióis foi determinado pelo método do ácido 5,5'-ditiobis-(2-nitrobenzoico) - reagente DTNB (Sigma, St. Louis, MO, EUA). O teste do reagente DTNB foi realizado conforme condições descritas anteriormente.( 17 ) Em suma, 30 µL de uma amostra foram misturados a 1 mL de PBS e 1 mM de EDTA (pH 7,5). A reação foi iniciada pela adição de 30 µL de solução estoque de DTNB (10 mM em PBS). As amostras controle, que não incluíam DTNB ou proteína, foram processadas simultaneamente. Após 30 min de incubação em temperatura ambiente, leu-se a absorbância a 412 nm e mediram-se as quantidades de ácido 5-tio-2-nitrobenzoico (TNB) formado (equivalentes à quantidade de grupos sulfidrilas). As carbonilas proteicas foram determinadas pelo método espectrofotométrico utilizando 2,4-dinitrofenil-hidrazina (DNPH), conforme descrito por Levine et al.( 18 ) Em suma, as amostras contendo ou ácido clorídrico 2 N ou DNPH foram passadas através de colunas contendo Sephadex G-10 e lavadas com ácido clorídrico 2 N. O efluente foi coletado e misturado a cloridrato de guanidina, após o que se determinou a absorbância a 360 nm em espectrofotômetro (SP 1105; Shanghai Spectrum Instruments Co., Ltd., Xangai, China). A diferença na absorbância com e sem DNPH foi calculada para todas as amostras. Os valores foram expressos em unidades molares utilizando-se o coeficiente de extinção de 22.000 [M-1]. A determinação do malondialdeído, um importante indicador de peroxidação lipídica, foi realizada por espectrofotometria do produto de cor rosa resultante das thiobarbituric acid-reactive substances (TBARS, substâncias reativas ao ácido tiobarbitúrico). As TBARS totais, como proxy para peroxidação lipídica (níveis de malondialdeído), foram expressas em mmol/mg de proteína.( 19 )

Para Western blotting, os homogeneizados de pulmão foram preparados a partir de pulmões congelados, utilizando-se um tampão de lise de tecido (50 mM de TRIS, pH 8,0; 5 mM de EDTA; 150 mM de NaCl; 1% de detergente não iônico; 0,5% de desoxicolato de sódio; e 0,1% de dodecilsulfato de sódio) e um coquetel de inibidores de protease (Sigma). Os lisados foram clarificados por centrifugação a 13.000 g por 15 min a 4°C; 10-30 g de proteína foram separados por SDS-PAGE em gel a 10% ou 15%; e a expressão de p-AMPK e p-mTOR foi analisada por immunoblot. A detecção da imunorreatividade foi realizada por quimiluminescência (ECL; Amersham Biosciences, Buckinghamshire, Reino Unido). A densidade das bandas foi determinada utilizando-se um densitômetro de imagem e analisada com o software do próprio aparelho ((GS-700 e Quantity One; Bio-Rad Laboratories, Hercules, CA, EUA).( 20 )

Os dados foram expressos em média ± erro padrão da média. Para comparar as médias entre os grupos, utilizou-se ANOVA de um fator seguida do teste post hoc HSD de Tukey para comparações múltiplas. O nível de significância adotado foi de p < 0,05. O software utilizado para a análise dos dados foi o Statistical Package for the Social Sciences, versão 18.0 para Windows (SPSS Inc., Chicago, IL, EUA). O tamanho da amostra foi baseado em estudos anteriores realizados em nosso laboratório,( 3 ) em que abordagens semelhantes foram empregadas.

Resultados

Entre os camundongos avaliados no presente estudo, a taxa de sobrevivência foi de 100%. Em comparação aos valores basais, o peso corporal dos animais diminuiu após 30, 45 e 60 dias de exposição à FC (27 ± 1 vs. 23 ± 0,8 g; p < 0,01, 26 ± 0,5 vs. 22 ± 0,4 g; p < 0,01, e 25 ± 0,7 vs. 20 ± 0,3 g; p < 0,001, respectivamente). Além disso, o peso corporal dos camundongos do grupo FC-60 foi significativamente menor que o dos camundongos controle, sendo também significativamente menor que o dos camundongos dos grupos FC-30 e FC-45 (p < 0,001 para todos).

Na análise histológica, as amostras de tecido pulmonar dos camundongos controle apresentaram septos alveolares finos e alvéolos normais, enquanto as dos camundongos que foram expostos à FC apresentaram destruição dos septos alveolares (iniciando-se no 15º dia de exposição), alargamento dos alvéolos e presença de macrófagos alveolares (Figura 1A). O alargamento dos alvéolos foi significativamente maior no grupo FC-45 (Figura 1A). Conforme mostrado na Figura 1B, os números tanto de macrófagos quanto de neutrófilos nos grupos FC aumentaram significativamente (em comparação aos observados para o grupo controle) em 7 dias de exposição à FC (p < 0,01). Porém, a diferença no número de neutrófilos foi mais pronunciada após 45 dias de exposição (p < 0,001).

Figura 1. Em A, fotomicrografias de amostras de tecido pulmonar de camundongos expostos a fumaça de cigarro mostrando aumento dos espaços aéreos (EA) resultante da consolidação alveolar durante o desenvolvimento de enfisema pulmonar (aumento, 40×): a, grupo controle; b, grupo exposto por 7 dias; c, grupo exposto por 15 dias; d, grupo exposto por 30 dias; e, grupo exposto por 45 dias; e f, grupo exposto por 60 dias. Em B, média ± EPM do número de macrófagos e de neutrófilos (células/mm2). *p < 0,001 vs. controle para macrófagos. †p < 0,001 vs. controle para neutrófilos. ‡p < 0,001 vs. basal para neutrófilos.

Figura 1

As Figuras 2, 3 e 4, respectivamente, mostram peroxidação lipídica, carbonilas proteicas e conteúdo de sulfidrila nas amostras de tecido pulmonar e nas amostras do músculo diafragma. Em ambos os tipos de tecido, as TBARS totais aumentaram após 7 dias de exposição à FC, da mesma foram que os níveis de carbonilas. Nos grupos FC-7, FC-15 e FC-45, houve diferenças entre as amostras de tecido pulmonar e as amostras do músculo diafragma em termos do grau de aumento dos níveis de carbonilas. No grupo FC-15, os níveis de TNB foram significativamente menores no tecido pulmonar que no músculo diafragma. Porém, em 7 dias de exposição à FC, os níveis de TNB foram menores que os valores controle em ambos os tipos de tecido.

Figura 2. Média ± EPM dos níveis de thiobarbituric acid-reactive substances (TBARS) no tecido pulmonar e no músculo diafragma em 6 grupos de camundongos: grupo controle e 5 grupos expostos a fumaça de cigarro por 7, 15, 30, 45 e 60 dias, respectivamente. *p < 0,05 vs. controle no tecido pulmonar. † p < 0,05 vs. controle no músculo diafragma. ‡ p < 0,05 vs. tecido pulmonar.

Figura 2

Figura 3. Média ± EPM dos níveis de carbonilas no tecido pulmonar e no músculo diafragma em 6 grupos de camundongos: grupo controle e 5 grupos expostos a fumaça de cigarro por 7, 15, 30, 45 e 60 dias, respectivamente. p < 0,05 vs. controle no tecido pulmonar. † p < 0,05 vs. controle no músculo diafragma. ‡ p < 0,05 vs. tecido pulmonar.

Figura 3

Figura 4. Média ± EPM dos níveis de ácido 5-tio-2- nitrobenzoico (TNB) no tecido pulmonar e no músculo diafragma em 6 grupos de camundongos: grupo controle e 5 grupos expostos a fumaça de cigarro por 7, 15, 30, 45 e 60 dias, respectivamente. * p < 0,05 vs. controle no tecido pulmonar. † p < 0,05 vs. controle no músculo diafragma. ‡ p < 0,05 vs. tecido pulmonar.

Figura 4

A expressão de p-AMPK no pulmão foi maior no grupo FC-15 que no grupo FC-7. Notadamente, nos grupos FC-30 e FC-45, a expressão de p-AMPK foi maior no músculo diafragma que no tecido pulmonar (Figura 5). Do 7º dia de exposição à FC em diante, a expressão de p-mTOR no pulmão foi menor em todos os grupos expostos à FC que no grupo controle. Porém, essa diferença foi mais pronunciada nos grupos FC-7 e FC-45. Nas amostras do músculo diafragma, a expressão de p-mTOR começou a aumentar em 15 dias de exposição à FC, atingindo seu pico em 45 dias (Figura 5).

Figura 5. Em A e B, média ± EPM para expressão de phosphorylated AMP-activated protein kinase (p-AMPK) no tecido pulmonar e no músculo diafragma, respectivamente. Em C e D, média ± EPM para expressão de phosphorylated mammalian target of rapamycin (p-mTOR) no tecido pulmonar e no músculo diafragma, respectivamente. Os dados são referentes a 6 grupos de camundongos: grupo controle e 5 grupos expostos a fumaça de cigarro por 7, 15, 30, 45 e 60 dias, respectivamente. *p < 0,01 vs. controle. †p < 0,001 vs. controle.

Figura 5

Discussão

No presente estudo, nosso principal objetivo foi caracterizar, em diferentes momentos, os efeitos induzidos pela exposição à FC. Os principais efeitos observados foram dano oxidativo no músculo diafragma e alterações morfológicas no tecido pulmonar.

A quantidade de neutrófilos, que está associada ao dano oxidativo no tecido pulmonar, alcançou seu maior valor em 45 dias de exposição à FC. Os números de macrófagos e de neutrófilos são elevados em pacientes com DPOC, apresentando relação direta com a gravidade da doença.( 21 ) Nossos dados demonstram aumentos de leucócitos, incluindo macrófagos e neutrófilos, do 7º ao 45º dia de exposição à FC, o que pode estar relacionado a aumento do número de células e proliferação celular, resultando na ativação da resposta imune.( 22 ) Conforme observado, confirmamos que as alterações pulmonares induzidas pela FC parecem ser consequência de uma lesão inflamatória primária caracterizada pelo acúmulo de macrófagos alveolares e neutrófilos no trato respiratório inferior como resposta imune, que é crucial na doença inflamatória.( 23 ) Sabe-se que as ERO desempenham um papel importante na resposta inflamatória à FC. O estresse oxidativo é caracterizado pela maior produção de ERO e diminuição dos níveis de antioxidantes, com a peroxidação lipídica, alterações tióis e carbonilação de proteínas no plasma.( 24 )

O enfisema pulmonar está associado a respostas intensas ao estresse oxidativo, que resultam em uma relação direta entre a atividade de defesa sistêmica e o dano oxidativo.( 25 , 26 ) O dano oxidativo e a inflamação no tecido pulmonar após exposição à FC têm sido amplamente estudados. Além disso, de acordo com MacNee,( 27 ) o estresse oxidativo, quantificado por meio da determinação dos níveis plasmáticos de TBARS, está associado à limitação do fluxo aéreo. As alterações do fluxo aéreo desempenham um papel na função dos músculos respiratórios como o diafragma. Porém, nossos achados demonstram que há aumento da intensidade da resposta inflamatória no tecido pulmonar começando após 45 dias de exposição à FC.

De acordo com Park et al.,( 10 ) a exposição à FC por 30 dias causa oxidação significativa e depleção do pool de glutationa no pulmão. Esses autores também concluíram que o pulmão é um alvo primário do dano oxidativo pelo tabagismo nos estágios iniciais e que, em algum momento, a FC exerce seus efeitos oxidativos em todos os órgãos. Em nosso estudo, observou-se que o dano oxidativo induzido pela FC causou alterações tanto nos pulmões quanto no diafragma. Verificou-se que a exposição à FC por 30-45 dias foi suficiente para gerar maiores níveis de dano oxidativo em músculo esquelético (diafragma).

Um estudo recente mostrou que a principal limitação encontrada em pacientes com DPOC pode estar relacionada ao mecanismo de débito cardíaco lento associado à limitação do fluxo aéreo.( 28 ) Chiappa et al.( 29 ) testaram condições que melhoram a oferta e o consumo de oxigênio como estratégias em pacientes com DPOC. Os autores demonstraram que uma dessas estratégias - o uso de heliox (uma mistura de 79% de hélio e 21% de oxigênio) - é capaz de melhorar a limitação do fluxo expiratório e a hiperinsuflação dinâmica, acelerando a dinâmica de utilização de oxigênio pela musculatura periférica em consequência do aumento da oferta durante exercícios de alta intensidade em pacientes com DPOC moderada a grave. Acreditamos que essas interações podem estar ligadas ao equilíbrio redox e às respostas inflamatórias. Um estudo recente sugeriu que, no manejo clínico da lesão pulmonar aguda, o uso de heliox apresenta benefícios terapêuticos combinados de redução do estresse mecânico e oxidativo, atenuando assim a inflamação pulmonar.( 30 )

O dano oxidativo gerado pela exposição à FC no músculo esquelético pode levar à perda da função muscular, manifestando-se como perda de força muscular e consequente maior susceptibilidade à fadiga.( 1 , 31 ) A presente investigação é a primeira a fornecer evidências de alterações oxidativas induzidas pelas ERO nas proteínas do músculo diafragma em animais cronicamente expostos à FC. Verificou-se que a oxidação proteica estava significativamente aumentada no diafragma após 7 dias de exposição à FC. Os maiores níveis de carbonilação do diafragma foram observados após 30-45 dias de exposição, em oposição aos níveis de carbonilação no pulmão, que só atingiram seu pico em 60 dias. Nossos dados indicam que a exposição à FC afeta principalmente o diafragma, o que pode se traduzir em perda significativa da função locomotora e da musculatura respiratória em enfisema pulmonar.

De acordo com Barreiro et al.,( 1 ) os efeitos da oxidação proteica muscular induzida pelo tabaco no músculo quadríceps surgem em uma fase anterior, em comparação aos observados nos músculos respiratórios. Esses achados reforçam o conceito de que a FC, por si só, provavelmente está envolvida na toxicidade tecidual direta da musculatura esquelética dos camundongos expostos à FC, independentemente das alterações pulmonares e brônquicas. Além disso, observou-se que os mesmos animais agudamente expostos à FC apresentaram aumento significativo das TBARS, juntamente com redução dos níveis musculares de sulfidrila, imediatamente após a exposição. A carbonilação é fundamental para desencadear a ativação da via oxidativa e promover a peroxidação lipídica.

Neste estudo sobre exposição crônica à FC em animais, mostramos que a função pulmonar diminui com o tempo de exposição, à semelhança do que foi observado em humanos.( 32 ) Além disso, há relatos de que a exposição crônica à FC causa obstrução ao fluxo aéreo.( 33 ) Quando analisamos a expressão de p-AMPK e p-mTOR no tecido pulmonar, observamos diminuição da expressão de p-mTOR, resultado que era esperado, pois a expressão de p-mTOR está associada ao metabolismo, crescimento, proliferação e sobrevivência celulares, dependendo de sinais mitogênicos, bem como da disponibilidade de nutrientes e de energia.

O aumento da expressão de p-mTOR observado no diafragma do 15º ao 45º dia de exposição à FC pode ser explicado pelo possível aumento da síntese proteica muscular relacionado a um estado de estresse fisiológico.( 34 ) Em um modelo de exposição à FC em ratos, Kozma et al.( 5 ) demonstraram que a resistência das vias aéreas e a resistência do sistema respiratório eram maiores nos animais expostos que nos animais não expostos. Esse aumento da resistência das vias aéreas pode resultar em maior trabalho diafragmático, o que explicaria o aumento da expressão de p-mTOR no diafragma em nossos grupos FC-15, FC-30 e FC-45, uma vez que se sabe que a expressão de p-mTOR é elevada em situações de hipertrofia muscular.( 35 ) Em nosso grupo FC-60, houve redução significativa da expressão de p-mTOR, o que foi um resultado esperado, pois a miopatia está associada à redução da expressão de p-mTOR.( 36 ) Essa miopatia é comum em doenças pulmonares crônicas.( 1 ) Porém, em nosso estudo, a expressão de p-AMPK encontrava-se aumentada apenas do 30º ao 45º dia de exposição à FC. Esse fato pode ser explicado pelo fato de que o aumento da expressão de p-AMPK foi acompanhado por aumento do estresse oxidativo, que fica claro quando olhamos para o aumento das carbonilas em 30 dias de exposição à FC. Evidências crescentes sugerem que a p-AMPK pode ser ativada por aumento de ERO intracelulares em muitos tipos de células.( 12 ) Assim, o envolvimento ou não da via de sinalização da p-AMPK sensível a ERO na inflamação pulmonar induzida pela fumaça tóxica ainda requer investigação.

Perang et al.( 37 ) foram os primeiros a relatar uma detalhada via de sinalização da AMPK responsável pela indução da expressão da interleucina (IL)-8 por exposição à fumaça tóxica em células epiteliais pulmonares. Nessa via, o aumento dos níveis intracelulares de ERO constitui o gatilho vital, pois a remoção de ERO intracelulares pela N-acetil-cisteína reduziu a ativação da AMPK, da c-Jun N-terminal quinase e da quinase regulada por sinal extracelular, bem como a indução de IL-8. ( 37 ) Estudos anteriores relataram que a fumaça tóxica pode aumentar o nível intracelular de ERO em células pulmonares, embora o mecanismo permaneça obscuro.( 38 )

Em conclusão, nosso estudo mostra, pela primeira vez, que as alterações oxidativas nas proteínas musculares ocorrem no diafragma já em 7 dias de exposição à FC. Além disso, esse evento ocorreu concomitantemente às anormalidades parenquimatosas induzidas pela FC nos pulmões, sugerindo um efeito tóxico direto da FC nas proteínas do músculo esquelético. Porém, nossos dados também tornam mais óbvio que o enfisema pulmonar é uma doença complexa que tem impacto negativo no corpo inteiro. Ademais, verificou-se que o dano oxidativo causado pela exposição à FC ocorre primeiro no músculo esquelético e então no tecido pulmonar.

Agradecimentos

Agradecemos a nossos colegas do Laboratório de Bioquímica e Fisiologia do Exercício da Universidade do Extremo Sul de Santa Catarina, em Criciúma, a sua colaboração.

Footnotes

Apoio financeiro: Este estudo recebeu apoio financeiro do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) e Universidade do Extremo Sul de Santa Catarina (UNESC).

*

Trabalho realizado no Laboratório de Fisiopatologia do Exercício, Hospital de Clinicas de Porto Alegre, Porto Alegre (RS) Brasil.


Articles from Jornal Brasileiro de Pneumologia are provided here courtesy of Sociedade Brasileira de Pneumologia e Tisiologia (Brazilian Thoracic Society)

RESOURCES