Abstract
Key studies defining the DNA alkylation properties and selectivity of a new class of exceptionally potent, naturally occurring antitumor antibiotics including CC-1065, duocarmycin A, and duocarmycin SA are reviewed. Recent studies conducted with synthetic agents containing deep-seated structural changes and the unnatural enantiomers of the natural products and related analogs have defined the structural basis for the sequence-selective alkylation of duplex DNA and fundamental relationships between chemical structure, functional reactivity, and biological properties. The agents undergo a reversible, stereoelectronically controlled adenine-N3 addition to the least substituted carbon of the activated cyclopropane within selected AT-rich sites. The preferential AT-rich non-covalent binding selectivity of the agents within the narrower, deeper AT-rich minor groove and the steric accessibility to the alkylation site that accompanies deep AT-rich minor groove penetration control the sequence-selective DNA alkylation reaction and stabilize the resulting adduct. For the agents that possess sufficient reactivity to alkylate DNA, a direct relationship between chemical or functional stability and biological potency has been defined.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambrose B. J., Pless R. C. DNA sequencing: chemical methods. Methods Enzymol. 1987;152:522–538. doi: 10.1016/0076-6879(87)52059-6. [DOI] [PubMed] [Google Scholar]
- Barnes W. M. Sequencing DNA with dideoxyribonucleotides as chain terminators: hints and strategies for big projects. Methods Enzymol. 1987;152:538–556. doi: 10.1016/0076-6879(87)52060-2. [DOI] [PubMed] [Google Scholar]
- Boger D. L., Invergo B. J., Coleman R. S., Zarrinmayeh H., Kitos P. A., Thompson S. C., Leong T., McLaughlin L. W. A demonstration of the intrinsic importance of stabilizing hydrophobic binding and non-covalent van der Waals contacts dominant in the non-covalent CC-1065/B-DNA binding. Chem Biol Interact. 1990;73(1):29–52. doi: 10.1016/0009-2797(90)90107-x. [DOI] [PubMed] [Google Scholar]
- Boger D. L., Johnson D. S., Palanki M. S., Kitos P. A., Chang J., Dowell P. Evaluation of functional analogs of CC-1065 and the duocarmycins incorporating the cross-linking 9a-chloromethyl-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-on e (C2BI) alkylation subunit. Bioorg Med Chem. 1993 Jul;1(1):27–38. doi: 10.1016/s0968-0896(00)82100-8. [DOI] [PubMed] [Google Scholar]
- Boger D. L., Johnson D. S., Yun W., Tarby C. M. Molecular basis for sequence selective DNA alkylation by (+)- and ent-(-)-CC-1065 and related agents: alkylation site models that accommodate the offset AT-rich adenine N3 alkylation selectivity. Bioorg Med Chem. 1994 Feb;2(2):115–135. doi: 10.1016/s0968-0896(00)82007-6. [DOI] [PubMed] [Google Scholar]
- Boger D. L., Zarrinmayeh H., Munk S. A., Kitos P. A., Suntornwat O. Demonstration of a pronounced effect of noncovalent binding selectivity on the (+)-CC-1065 DNA alkylation and identification of the pharmacophore of the alkylation subunit. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1431–1435. doi: 10.1073/pnas.88.4.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dervan P. B. Design of sequence-specific DNA-binding molecules. Science. 1986 Apr 25;232(4749):464–471. doi: 10.1126/science.2421408. [DOI] [PubMed] [Google Scholar]
- Feigon J., Sklenár V., Wang E., Gilbert D. E., Macaya R. F., Schultze P. 1H NMR spectroscopy of DNA. Methods Enzymol. 1992;211:235–253. doi: 10.1016/0076-6879(92)11015-b. [DOI] [PubMed] [Google Scholar]
- Hurley L. H., Lee C. S., McGovren J. P., Warpehoski M. A., Mitchell M. A., Kelly R. C., Aristoff P. A. Molecular basis for sequence-specific DNA alkylation by CC-1065. Biochemistry. 1988 May 17;27(10):3886–3892. doi: 10.1021/bi00410a054. [DOI] [PubMed] [Google Scholar]
- Hurley L. H., Reynolds V. L., Swenson D. H., Petzold G. L., Scahill T. A. Reaction of the antitumor antibiotic CC-1065 with DNA: structure of a DNA adduct with DNA sequence specificity. Science. 1984 Nov 16;226(4676):843–844. doi: 10.1126/science.6494915. [DOI] [PubMed] [Google Scholar]
- Ichimura M., Muroi K., Asano K., Kawamoto I., Tomita F., Morimoto M., Nakano H. DC89-A1, a new antitumor antibiotic from Streptomyces. J Antibiot (Tokyo) 1988 Sep;41(9):1285–1288. doi: 10.7164/antibiotics.41.1285. [DOI] [PubMed] [Google Scholar]
- Ichimura M., Ogawa T., Katsumata S., Takahashi K., Takahashi I., Nakano H. Duocarmycins, new antitumor antibiotics produced by Streptomyces; producing organisms and improved production. J Antibiot (Tokyo) 1991 Oct;44(10):1045–1053. doi: 10.7164/antibiotics.44.1045. [DOI] [PubMed] [Google Scholar]
- Ichimura M., Ogawa T., Takahashi K., Kobayashi E., Kawamoto I., Yasuzawa T., Takahashi I., Nakano H. Duocarmycin SA, a new antitumor antibiotic from Streptomyces sp. J Antibiot (Tokyo) 1990 Aug;43(8):1037–1038. doi: 10.7164/antibiotics.43.1037. [DOI] [PubMed] [Google Scholar]
- Ishii S., Nagasawa M., Kariya Y., Yamamoto H., Inouye S., Kondo S. Antitumor activity of pyrindamycins A and B. J Antibiot (Tokyo) 1989 Nov;42(11):1713–1717. doi: 10.7164/antibiotics.42.1713. [DOI] [PubMed] [Google Scholar]
- Lin C. H., Beale J. M., Hurley L. H. Structure of the (+)-CC-1065-DNA adduct: critical role of ordered water molecules and implications for involvement of phosphate catalysis in the covalent reaction. Biochemistry. 1991 Apr 16;30(15):3597–3602. doi: 10.1021/bi00229a002. [DOI] [PubMed] [Google Scholar]
- Lin C. H., Hill G. C., Hurley L. H. Characterization of a 12-mer duplex d(GGCGGAGTTAGG).d(CCTAACTCCGCC) containing a highly reactive (+)-CC-1065 sequence by 1H and 31P NMR, hydroxyl-radical footprinting, and NOESY restrained molecular dynamics calculations. Chem Res Toxicol. 1992 Mar-Apr;5(2):167–182. doi: 10.1021/tx00026a005. [DOI] [PubMed] [Google Scholar]
- Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
- Mohamadi F., Spees M. M., Staten G. S., Marder P., Kipka J. K., Johnson D. A., Boger D. L., Zarrinmayeh H. Total synthesis and biological properties of novel antineoplastic (chloromethyl)furanoindolines: an asymmetric hydroboration mediated synthesis of the alkylation subunits. J Med Chem. 1994 Jan 21;37(2):232–239. doi: 10.1021/jm00028a005. [DOI] [PubMed] [Google Scholar]
- Monroe T. J., Mitchell M. A. In vivo mutagenesis induced by CC-1065 and adozelesin DNA alkylation in a transgenic mouse model. Cancer Res. 1993 Dec 1;53(23):5690–5696. [PubMed] [Google Scholar]
- Ohba K., Watabe H., Sasaki T., Takeuchi Y., Kodama Y., Nakazawa T., Yamamoto H., Shomura T., Sezaki M., Kondo S. Pyrindamycins A and B, new antitumor antibiotics. J Antibiot (Tokyo) 1988 Oct;41(10):1515–1519. doi: 10.7164/antibiotics.41.1515. [DOI] [PubMed] [Google Scholar]
- Reynolds V. L., Molineux I. J., Kaplan D. J., Swenson D. H., Hurley L. H. Reaction of the antitumor antibiotic CC-1065 with DNA. Location of the site of thermally induced strand breakage and analysis of DNA sequence specificity. Biochemistry. 1985 Oct 22;24(22):6228–6237. doi: 10.1021/bi00343a029. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun D., Lin C. H., Hurley L. H. A-tract and (+)-CC-1065-induced bending of DNA. Comparison of structural features using non-denaturing gel analysis, hydroxyl-radical footprinting, and high-field NMR. Biochemistry. 1993 May 4;32(17):4487–4495. doi: 10.1021/bi00068a003. [DOI] [PubMed] [Google Scholar]
- Takahashi I., Takahashi K., Ichimura M., Morimoto M., Asano K., Kawamoto I., Tomita F., Nakano H. Duocarmycin A, a new antitumor antibiotic from Streptomyces. J Antibiot (Tokyo) 1988 Dec;41(12):1915–1917. doi: 10.7164/antibiotics.41.1915. [DOI] [PubMed] [Google Scholar]
- Takahashi J., Kinomura S., Abe Y., Yoshioka S., Yambe T., Ono S., Ito H., Fukuda H., Yamada K., Sato T. [Two cases of malignant effusion treated successfully by loco-regional administration of carboplatin]. Gan To Kagaku Ryoho. 1994 Dec;21(16):2817–2820. [PubMed] [Google Scholar]
- Warpehoski M. A., Gebhard I., Kelly R. C., Krueger W. C., Li L. H., McGovren J. P., Prairie M. D., Wicnienski N., Wierenga W. Stereoelectronic factors influencing the biological activity and DNA interaction of synthetic antitumor agents modeled on CC-1065. J Med Chem. 1988 Mar;31(3):590–603. doi: 10.1021/jm00398a017. [DOI] [PubMed] [Google Scholar]
- Warpehoski M. A., Harper D. E., Mitchell M. A., Monroe T. J. Reversibility of the covalent reaction of CC-1065 and analogues with DNA. Biochemistry. 1992 Mar 10;31(9):2502–2508. doi: 10.1021/bi00124a009. [DOI] [PubMed] [Google Scholar]
- Warpehoski M. A., Hurley L. H. Sequence selectivity of DNA covalent modification. Chem Res Toxicol. 1988 Nov-Dec;1(6):315–333. doi: 10.1021/tx00006a001. [DOI] [PubMed] [Google Scholar]
- Wierenga W., Bhuyan B. K., Kelly R. C., Krueger W. C., Li L. H., McGovren J. P., Swenson D. H., Warpehoski M. A. Antitumor activity and biochemistry of novel analogs of the antibiotic, CC-1065. Adv Enzyme Regul. 1986;25:141–155. doi: 10.1016/0065-2571(86)90012-9. [DOI] [PubMed] [Google Scholar]
- Yamamoto K., Sugiyama H., Kawanishi S. Concerted DNA recognition and novel site-specific alkylation by duocarmycin A with distamycin A. Biochemistry. 1993 Feb 2;32(4):1059–1066. doi: 10.1021/bi00055a010. [DOI] [PubMed] [Google Scholar]
- Yasuzawa T., Iida T., Muroi K., Ichimura M., Takahashi K., Sano H. Structures of duocarmycins, novel antitumor antibiotics produced by Streptomyces sp. Chem Pharm Bull (Tokyo) 1988 Sep;36(9):3728–3731. doi: 10.1248/cpb.36.3728. [DOI] [PubMed] [Google Scholar]