Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Apr 25;92(9):3809–3813. doi: 10.1073/pnas.92.9.3809

The nucleotide sequence of chromosome I from Saccharomyces cerevisiae.

H Bussey 1, D B Kaback 1, W Zhong 1, D T Vo 1, M W Clark 1, N Fortin 1, J Hall 1, B F Ouellette 1, T Keng 1, A B Barton 1, et al.
PMCID: PMC42051  PMID: 7731988

Abstract

Chromosome I from the yeast Saccharomyces cerevisiae contains a DNA molecule of approximately 231 kbp and is the smallest naturally occurring functional eukaryotic nuclear chromosome so far characterized. The nucleotide sequence of this chromosome has been determined as part of an international collaboration to sequence the entire yeast genome. The chromosome contains 89 open reading frames and 4 tRNA genes. The central 165 kbp of the chromosome resembles other large sequenced regions of the yeast genome in both its high density and distribution of genes. In contrast, the remaining sequences flanking this DNA that comprise the two ends of the chromosome and make up more than 25% of the DNA molecule have a much lower gene density, are largely not transcribed, contain no genes essential for vegetative growth, and contain several apparent pseudogenes and a 15-kbp redundant sequence. These terminally repetitive regions consist of a telomeric repeat called W', flanked by DNA closely related to the yeast FLO1 gene. The low gene density, presence of pseudogenes, and lack of expression are consistent with the idea that these terminal regions represent the yeast equivalent of heterochromatin. The occurrence of such a high proportion of DNA with so little information suggests that its presence gives this chromosome the critical length required for proper function.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Boguski M. S., Gish W., Wootton J. C. Issues in searching molecular sequence databases. Nat Genet. 1994 Feb;6(2):119–129. doi: 10.1038/ng0294-119. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Boguski M. S., Gish W., Wootton J. C. Issues in searching molecular sequence databases. Nat Genet. 1994 Feb;6(2):119–129. doi: 10.1038/ng0294-119. [DOI] [PubMed] [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  5. Barton A. B., Kaback D. B. Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: analysis of the genes in the FUN38-MAK16-SPO7 region. J Bacteriol. 1994 Apr;176(7):1872–1880. doi: 10.1128/jb.176.7.1872-1880.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Biteau N., Fremaux C., Hebrard S., Menara A., Aigle M., Crouzet M. The complete sequence of a 10.8kb fragment to the right of the chromosome III centromere of Saccharomyces cerevisiae. Yeast. 1992 Jan;8(1):61–70. doi: 10.1002/yea.320080107. [DOI] [PubMed] [Google Scholar]
  7. Brewer B. J. When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell. 1988 Jun 3;53(5):679–686. doi: 10.1016/0092-8674(88)90086-4. [DOI] [PubMed] [Google Scholar]
  8. Clark M. W., Zhong W. W., Keng T., Storms R. K., Barton A., Kaback D. B., Bussey H. Identification of a Saccharomyces cerevisiae homolog of the SNF2 transcriptional regulator in the DNA sequence of an 8.6 kb region in the LTE1-CYS1 interval on the left arm of chromosome I. Yeast. 1992 Feb;8(2):133–145. doi: 10.1002/yea.320080208. [DOI] [PubMed] [Google Scholar]
  9. Dear S., Staden R. A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res. 1991 Jul 25;19(14):3907–3911. doi: 10.1093/nar/19.14.3907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dujon B., Alexandraki D., André B., Ansorge W., Baladron V., Ballesta J. P., Banrevi A., Bolle P. A., Bolotin-Fukuhara M., Bossier P. Complete DNA sequence of yeast chromosome XI. Nature. 1994 Jun 2;369(6479):371–378. doi: 10.1038/369371a0. [DOI] [PubMed] [Google Scholar]
  11. Dujon B., Alexandraki D., André B., Ansorge W., Baladron V., Ballesta J. P., Banrevi A., Bolle P. A., Bolotin-Fukuhara M., Bossier P. Complete DNA sequence of yeast chromosome XI. Nature. 1994 Jun 2;369(6479):371–378. doi: 10.1038/369371a0. [DOI] [PubMed] [Google Scholar]
  12. Feldmann H., Aigle M., Aljinovic G., André B., Baclet M. C., Barthe C., Baur A., Bécam A. M., Biteau N., Boles E. Complete DNA sequence of yeast chromosome II. EMBO J. 1994 Dec 15;13(24):5795–5809. doi: 10.1002/j.1460-2075.1994.tb06923.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fritsch E. F., Lawn R. M., Maniatis T. Molecular cloning and characterization of the human beta-like globin gene cluster. Cell. 1980 Apr;19(4):959–972. doi: 10.1016/0092-8674(80)90087-2. [DOI] [PubMed] [Google Scholar]
  14. Fritsch E. F., Lawn R. M., Maniatis T. Molecular cloning and characterization of the human beta-like globin gene cluster. Cell. 1980 Apr;19(4):959–972. doi: 10.1016/0092-8674(80)90087-2. [DOI] [PubMed] [Google Scholar]
  15. Goffeau A., Nakai K., Slonimski P., Risler J. L., Slominski P [corrected to Slonimski P. ]. The membrane proteins encoded by yeast chromosome III genes. FEBS Lett. 1993 Jun 28;325(1-2):112–117. doi: 10.1016/0014-5793(93)81425-y. [DOI] [PubMed] [Google Scholar]
  16. Harris S. D., Cheng J., Pugh T. A., Pringle J. R. Molecular analysis of Saccharomyces cerevisiae chromosome I. On the number of genes and the identification of essential genes using temperature-sensitive-lethal mutations. J Mol Biol. 1992 May 5;225(1):53–65. doi: 10.1016/0022-2836(92)91025-k. [DOI] [PubMed] [Google Scholar]
  17. Johnston M., Andrews S., Brinkman R., Cooper J., Ding H., Dover J., Du Z., Favello A., Fulton L., Gattung S. Complete nucleotide sequence of Saccharomyces cerevisiae chromosome VIII. Science. 1994 Sep 30;265(5181):2077–2082. doi: 10.1126/science.8091229. [DOI] [PubMed] [Google Scholar]
  18. Kaback D. B., Guacci V., Barber D., Mahon J. W. Chromosome size-dependent control of meiotic recombination. Science. 1992 Apr 10;256(5054):228–232. doi: 10.1126/science.1566070. [DOI] [PubMed] [Google Scholar]
  19. Kaback D. B., Oeller P. W., Yde Steensma H., Hirschman J., Ruezinsky D., Coleman K. G., Pringle J. R. Temperature-sensitive lethal mutations on yeast chromosome I appear to define only a small number of genes. Genetics. 1984 Sep;108(1):67–90. doi: 10.1093/genetics/108.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kaback D. B., Steensma H. Y., de Jonge P. Enhanced meiotic recombination on the smallest chromosome of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1989 May;86(10):3694–3698. doi: 10.1073/pnas.86.10.3694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murray A. W., Schultes N. P., Szostak J. W. Chromosome length controls mitotic chromosome segregation in yeast. Cell. 1986 May 23;45(4):529–536. doi: 10.1016/0092-8674(86)90284-9. [DOI] [PubMed] [Google Scholar]
  22. Oliver S. G., van der Aart Q. J., Agostoni-Carbone M. L., Aigle M., Alberghina L., Alexandraki D., Antoine G., Anwar R., Ballesta J. P., Benit P. The complete DNA sequence of yeast chromosome III. Nature. 1992 May 7;357(6373):38–46. doi: 10.1038/357038a0. [DOI] [PubMed] [Google Scholar]
  23. Oliver S. G., van der Aart Q. J., Agostoni-Carbone M. L., Aigle M., Alberghina L., Alexandraki D., Antoine G., Anwar R., Ballesta J. P., Benit P. The complete DNA sequence of yeast chromosome III. Nature. 1992 May 7;357(6373):38–46. doi: 10.1038/357038a0. [DOI] [PubMed] [Google Scholar]
  24. Ono B., Ishino-Arao Y. Inheritance of chromosome length polymorphisms in Saccharomyces cerevisiae. Curr Genet. 1988 Nov;14(5):413–418. doi: 10.1007/BF00521262. [DOI] [PubMed] [Google Scholar]
  25. Ouellette B. F., Clark M. W., Keng T., Storms R. K., Zhong W., Zeng B., Fortin N., Delaney S., Barton A., Kaback D. B. Sequencing of chromosome I from Saccharomyces cerevisiae: analysis of a 32 kb region between the LTE1 and SPO7 genes. Genome. 1993 Feb;36(1):32–42. doi: 10.1139/g93-005. [DOI] [PubMed] [Google Scholar]
  26. Ouellette B. F., Clark M. W., Keng T., Storms R. K., Zhong W., Zeng B., Fortin N., Delaney S., Barton A., Kaback D. B. Sequencing of chromosome I from Saccharomyces cerevisiae: analysis of a 32 kb region between the LTE1 and SPO7 genes. Genome. 1993 Feb;36(1):32–42. doi: 10.1139/g93-005. [DOI] [PubMed] [Google Scholar]
  27. Riles L., Dutchik J. E., Baktha A., McCauley B. K., Thayer E. C., Leckie M. P., Braden V. V., Depke J. E., Olson M. V. Physical maps of the six smallest chromosomes of Saccharomyces cerevisiae at a resolution of 2.6 kilobase pairs. Genetics. 1993 May;134(1):81–150. doi: 10.1093/genetics/134.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Riles L., Dutchik J. E., Baktha A., McCauley B. K., Thayer E. C., Leckie M. P., Braden V. V., Depke J. E., Olson M. V. Physical maps of the six smallest chromosomes of Saccharomyces cerevisiae at a resolution of 2.6 kilobase pairs. Genetics. 1993 May;134(1):81–150. doi: 10.1093/genetics/134.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Steensma H. Y., Crowley J. C., Kaback D. B. Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: isolation and analysis of the CEN1-ADE1-CDC15 region. Mol Cell Biol. 1987 Jan;7(1):410–419. doi: 10.1128/mcb.7.1.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Steensma H. Y., Crowley J. C., Kaback D. B. Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: isolation and analysis of the CEN1-ADE1-CDC15 region. Mol Cell Biol. 1987 Jan;7(1):410–419. doi: 10.1128/mcb.7.1.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Surosky R. T., Newlon C. S., Tye B. K. The mitotic stability of deletion derivatives of chromosome III in yeast. Proc Natl Acad Sci U S A. 1986 Jan;83(2):414–418. doi: 10.1073/pnas.83.2.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tanaka S., Yoshikawa A., Isono K. An ordered clone bank for chromosome I of Saccharomyces cerevisiae. J Bacteriol. 1992 Sep;174(18):5985–5987. doi: 10.1128/jb.174.18.5985-5987.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tanaka S., Yoshikawa A., Isono K. An ordered clone bank for chromosome I of Saccharomyces cerevisiae. J Bacteriol. 1992 Sep;174(18):5985–5987. doi: 10.1128/jb.174.18.5985-5987.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Teunissen A. W., van den Berg J. A., Steensma H. Y. Physical localization of the flocculation gene FLO1 on chromosome I of Saccharomyces cerevisiae. Yeast. 1993 Jan;9(1):1–10. doi: 10.1002/yea.320090102. [DOI] [PubMed] [Google Scholar]
  35. Teunissen A. W., van den Berg J. A., Steensma H. Y. Physical localization of the flocculation gene FLO1 on chromosome I of Saccharomyces cerevisiae. Yeast. 1993 Jan;9(1):1–10. doi: 10.1002/yea.320090102. [DOI] [PubMed] [Google Scholar]
  36. Thierry A., Gaillon L., Galibert F., Dujon B. Construction of a complete genomic library of Saccharomyces cerevisiae and physical mapping of chromosome XI at 3.7 kb resolution. Yeast. 1995 Feb;11(2):121–135. doi: 10.1002/yea.320110204. [DOI] [PubMed] [Google Scholar]
  37. Thierry A., Gaillon L., Galibert F., Dujon B. Construction of a complete genomic library of Saccharomyces cerevisiae and physical mapping of chromosome XI at 3.7 kb resolution. Yeast. 1995 Feb;11(2):121–135. doi: 10.1002/yea.320110204. [DOI] [PubMed] [Google Scholar]
  38. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983 Apr 14;302(5909):575–581. doi: 10.1038/302575a0. [DOI] [PubMed] [Google Scholar]
  39. Watari J., Takata Y., Ogawa M., Sahara H., Koshino S., Onnela M. L., Airaksinen U., Jaatinen R., Penttilä M., Keränen S. Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast. 1994 Feb;10(2):211–225. doi: 10.1002/yea.320100208. [DOI] [PubMed] [Google Scholar]
  40. Watari J., Takata Y., Ogawa M., Sahara H., Koshino S., Onnela M. L., Airaksinen U., Jaatinen R., Penttilä M., Keränen S. Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast. 1994 Feb;10(2):211–225. doi: 10.1002/yea.320100208. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES