Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1976 Mar;13(3):728–734. doi: 10.1128/iai.13.3.728-734.1976

Inhibitory action of D-galactose on phagocyte metabolism and function.

W J Litchfield, W W Wells
PMCID: PMC420670  PMID: 773823

Abstract

To account for enhanced susceptibility to infection among galactosemics, the acute effects of D-galactose on metabolic and functional activities of phagocytic cells in vitro were investigated. Human and guinea pig polymorphonuclear leukocytes (PMN) when incubated in medium containing 30 mM galactose displayed substantially less killing of Escherichia coli than when incubated in medium with 5 mM glucose. Impaired bactericidal activity was dependent upon galactose concentration but could be partially averted by supplementing the galactose-containing medium with 15 mM glucose. Phagocytic activities of guinea pig PMN and peritoneal macrophages were assayed by following ingestion of 32P-labeled E. coli and were also depressed by elevated galactose. Galactose was readily epimerized to glucose by resting PMN, and this conversion was stimulated by phagocytosis. Incubation of macrophages in the presence of galactose resulted in depletion of intracellular levels of adenosine 5' -triphosphate as well as other metabolities.

Full text

PDF
728

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagdade J. D., Root R. K., Bulger R. J. Impaired leukocyte function in patients with poorly controlled diabetes. Diabetes. 1974 Jan;23(1):9–15. doi: 10.2337/diab.23.1.9. [DOI] [PubMed] [Google Scholar]
  2. Bigley R. H., Stankova L. Uptake and reduction of oxidized and reduced ascorbate by human leukocytes. J Exp Med. 1974 May 1;139(5):1084–1092. doi: 10.1084/jem.139.5.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Drachman R. H., Root R. K., Wood W. B., Jr Studies on the effect of experimental nonketotic diabetes mellitus on antibacterial defense. I. Demonstration of a defect in phagocytosis. J Exp Med. 1966 Aug 1;124(2):227–240. doi: 10.1084/jem.124.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Granett S. E., Kozak L. P., McIntyre J. P., Wells W. W. Studies on cerebral energy metabolism during the course of galactose neurotoxicity in chicks. J Neurochem. 1972 Jul;19(7):1659–1670. doi: 10.1111/j.1471-4159.1972.tb06211.x. [DOI] [PubMed] [Google Scholar]
  5. Kelly S., Burns J., Desjardins L. Incidence of galactosemia at birth in New York State. Am J Epidemiol. 1974 Jan;99(1):8–13. doi: 10.1093/oxfordjournals.aje.a121589. [DOI] [PubMed] [Google Scholar]
  6. Kozak L. P., Wells W. W. Studies on the metabolic determinants of D-galactose-induced neurotoxicity in the chick. J Neurochem. 1971 Nov;18(11):2217–2228. doi: 10.1111/j.1471-4159.1971.tb05080.x. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Lentz P. E., Di Luzio N. R. Isolation of adult rat liver macrophages (Kupffer cells). Methods Enzymol. 1974;32:647–653. doi: 10.1016/0076-6879(74)32067-8. [DOI] [PubMed] [Google Scholar]
  9. Medline A., Medline N. M. Galactosemia: early structural changes in the liver. Can Med Assoc J. 1972 Nov 4;107(9):877–878. [PMC free article] [PubMed] [Google Scholar]
  10. PENINGTON J. S., PRANKERD T. A. Studies of erythrocyte phosphate ester metabolism in galactosaemia. Clin Sci. 1958 Aug;17(3):385–391. [PubMed] [Google Scholar]
  11. Quan-Ma R., Wells H. J., Wells W. W., Sherman F. E., Egan T. J. Galactitol in the tissues of a galactosemic child. Am J Dis Child. 1966 Nov;112(5):477–478. doi: 10.1001/archpedi.1966.02090140149018. [DOI] [PubMed] [Google Scholar]
  12. SBARRA A. J., KARNOVSKY M. L. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem. 1959 Jun;234(6):1355–1362. [PubMed] [Google Scholar]
  13. SBARRA A. J., SHIRLEY W., BAUMSTARK J. S. Effect of osmolarity on phagocytosis. J Bacteriol. 1963 Feb;85:306–313. doi: 10.1128/jb.85.2.306-313.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sanchez A., Reeser J. L., Lau H. S., Yahiku P. Y., Willard R. E., McMillan P. J., Cho S. Y., Magie A. R., Register U. D. Role of sugars in human neutrophilic phagocytosis. Am J Clin Nutr. 1973 Nov;26(11):1180–1184. doi: 10.1093/ajcn/26.11.1180. [DOI] [PubMed] [Google Scholar]
  15. Stiehm E. R. Fetal defense mechanisms. Am J Dis Child. 1975 Apr;129(4):438–443. doi: 10.1001/archpedi.1975.02120410026011. [DOI] [PubMed] [Google Scholar]
  16. Tedesco T. A., Mellman W. J. Galactose-1-phosphate uridyltransferase and galactokinase activity in cultured human diploid fibroblasts and peripheral blood leukocytes. I. Analysis of transferase genotypes by the ratio of the activities of the two enzymes. J Clin Invest. 1969 Dec;48(12):2390–2397. doi: 10.1172/JCI106205. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES