Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1976 Mar;13(3):830–835. doi: 10.1128/iai.13.3.830-835.1976

Germination of Candida albicans induced by proline.

N Dabrowa, S S Taxer, D H Howard
PMCID: PMC420685  PMID: 5375

Abstract

Blastospores of Candida albicans germinated in proline-biotin-buffer medium incubated at 37 C. Certain other amino acids in the glatamate, asparate, and pyruvate families also fostered germinaton but generally to a lesser extent than did proline. L-Cysteine, D-proline, and certain structural analogues of L-proline inhibited proline-stimualted germination. The concentration of phosphate and glucose was crucial to amino acid-stimulated germination of C. albicans. Clinical isolates and stock cultures varied in their response to the germ tube-inducing activity of proline or other amino acids. The proline-buffer medium cannot be used in a diagnostic test for production of germ tubes by isolates of yeasts.

Full text

PDF
830

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dabrowa N., Howard D. H., Landau J. W., Shechter Y. Synthesis of nueic acids and proteins in the dimorphic forms of Candida albicans. Sabouraudia. 1970 Nov;8(3):163–169. doi: 10.1080/00362177085190831. [DOI] [PubMed] [Google Scholar]
  2. Dolan C. T., Ihrke D. M. Further studies of the germ-tube test for Candida albicans identification. Am J Clin Pathol. 1971 Jun;55(6):733–734. doi: 10.1093/ajcp/55.6.733. [DOI] [PubMed] [Google Scholar]
  3. Evans E. G., Odds F. C., Richardson M. D., Holland K. T. Optimum conditions for initiation of filamentation in Candida albicans. Can J Microbiol. 1975 Mar;21(3):338–342. doi: 10.1139/m75-048. [DOI] [PubMed] [Google Scholar]
  4. FAHLBERG W. J., DUKES C. D., GUTHRIE R. K. Rapid classification of Candida (Monilia) albicans. J Invest Dermatol. 1957 Aug;29(2):111–118. doi: 10.1038/jid.1957.78. [DOI] [PubMed] [Google Scholar]
  5. JOHNSON S. A. Candida (Monilia) albicans: effect of amino acids, glucose, pH, chlortetracycline (aureomycin), dibasic sodium and calcium phosphates, and anaerobic and aerobic conditions on its growth. AMA Arch Derm Syphilol. 1954 Jul;70(1):49–60. doi: 10.1001/archderm.1954.01540190051003. [DOI] [PubMed] [Google Scholar]
  6. Jansons V. K., Nickerson W. J. Induction, morphogenesis, and germination of the chlamydospore of Candida albicans. J Bacteriol. 1970 Nov;104(2):910–921. doi: 10.1128/jb.104.2.910-921.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Koobs D. H. Phosphate mediation of the Crabtree and Pasteur effects. Science. 1972 Oct 13;178(4057):127–133. doi: 10.1126/science.178.4057.127. [DOI] [PubMed] [Google Scholar]
  8. LANDAU J. W., DABROWA N., NEWCOMER V. D. THE RAPID FORMATION IN SERUM OF FILAMENTS BY CANDIDA ALBICANS. J Invest Dermatol. 1965 Mar;44:171–179. [PubMed] [Google Scholar]
  9. Land G. A., McDonald W. C., Stjernholm R. L., Friedman L. Factors affecting filamentation in Candida albicans: changes in respiratory activity of Candida albicans during filamentation. Infect Immun. 1975 Jul;12(1):119–127. doi: 10.1128/iai.12.1.119-127.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Land G. A., McDonald W. C., Stjernholm R. L., Friedman T. L. Factors affecting filamentation in Candida albicans: relationship of the uptake and distribution of proline to morphogenesis. Infect Immun. 1975 May;11(5):1014–1023. doi: 10.1128/iai.11.5.1014-1023.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lee K. L., Buckley H. R., Campbell C. C. An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida Albicans. Sabouraudia. 1975 Jul;13(2):148–153. doi: 10.1080/00362177585190271. [DOI] [PubMed] [Google Scholar]
  12. Mackenzie D. W. Serum tube identification of Candida albicans. J Clin Pathol. 1962 Nov;15(6):563–565. doi: 10.1136/jcp.15.6.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mardon D. N., Hurst S. K., Balish E. Germ-tube production by Candida albicans in minimal liquid culture media. Can J Microbiol. 1971 Jul;17(7):851–856. doi: 10.1139/m71-137. [DOI] [PubMed] [Google Scholar]
  14. Mardon D., Balish E., Phillips A. W. Control of dimorphism in a biochemical variant of Candida albicans. J Bacteriol. 1969 Nov;100(2):701–707. doi: 10.1128/jb.100.2.701-707.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. RIDLEY M. F. A comparison of methods for identification of Candida albicans. Aust J Dermatol. 1960 Dec;5:209–213. [PubMed] [Google Scholar]
  16. SCHERR G. H., WEAVER R. H. The dimorphism phenomenon in yeasts. Bacteriol Rev. 1953 Mar;17(1):51–92. doi: 10.1128/br.17.1.51-92.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. TASCHDJIAN C. L., BURCHALL J. J., KOZINN P. J. Rapid identification of Candida albicans by filamentation on serum and serum substitutes. AMA J Dis Child. 1960 Feb;99:212–215. doi: 10.1001/archpedi.1960.02070030214011. [DOI] [PubMed] [Google Scholar]
  18. WIDRA A. PHOSPHATE DIRECTED Y-M VARIATION IN CANDIDA ALBICANS. Mycopathol Mycol Appl. 1964 Sep 30;23:197–202. doi: 10.1007/BF02068455. [DOI] [PubMed] [Google Scholar]
  19. Wain W. H., Price M. F., Cawson R. A. A re-evaluation of the effect of cysteine or Candida albicans. Sabouraudia. 1975 Mar;13(Pt 1):74–82. [PubMed] [Google Scholar]
  20. YANAGITA T. Biochemical aspects on the germination of conidiospores of Aspergillus niger. Arch Mikrobiol. 1957;26(4):329–344. doi: 10.1007/BF00407583. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES