Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Apr 25;92(9):3918–3922. doi: 10.1073/pnas.92.9.3918

Electrical and synaptic properties of embryonic luteinizing hormone-releasing hormone neurons in explant cultures.

K Kusano 1, S Fueshko 1, H Gainer 1, S Wray 1
PMCID: PMC42073  PMID: 7537379

Abstract

Voltage- and ligand-activated channels in embryonic neurons containing luteinizing hormone-releasing hormone (LHRH) were studied by patch-pipette, whole-cell current and voltage clamp techniques. LHRH neurons were maintained in explant cultures derived from olfactory pit regions of embryonic mice. Cells were marked intracellularly with Lucifer yellow following recording. Sixty-two cells were unequivocally identified as LHRH neurons by Lucifer yellow and LHRH immunocytochemistry. The cultured LHRH neurons had resting potentials around -50 mV, exhibited spontaneous discharges generated by intrinsic and/or synaptic activities and contained a time-dependent inward rectifier (Iir). Voltage clamp analysis of ionic currents in the LHRH neuron soma revealed a tetrodotoxin-sensitive Na+ current (INa) and two major types of K+ currents, a transient current (IA), a delayed rectifier current (IK) and low- and high-voltage-activated Ca2+ currents. Spontaneous depolarizing synaptic potentials and depolarizations induced by direct application of gamma-aminobutyrate were both inhibited by picrotoxin or bicuculline, demonstrating the presence of functional gamma-aminobutyrate type A synapses on these neurons. Responses to glutamate were found in LHRH neurons in older cultures. Thus, embryonic LHRH neurons not yet positioned in their postnatal environment in the forebrain contained a highly differentiated repertoire of voltage- and ligand-gated channels.

Full text

PDF
3918

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bosma M. M. Ion channel properties and episodic activity in isolated immortalized gonadotropin-releasing hormone (GnRH) neurons. J Membr Biol. 1993 Oct;136(1):85–96. doi: 10.1007/BF00241492. [DOI] [PubMed] [Google Scholar]
  2. Cardenas H., Ordög T., O'Byrne K. T., Knobil E. Single unit components of the hypothalamic multiunit electrical activity associated with the central signal generator that directs the pulsatile secretion of gonadotropic hormones. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9630–9634. doi: 10.1073/pnas.90.20.9630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Condon T. P., Ronnekleiv O. K., Kelly M. J. Estrogen modulation of the alpha-1-adrenergic response of hypothalamic neurons. Neuroendocrinology. 1989 Jul;50(1):51–58. doi: 10.1159/000125201. [DOI] [PubMed] [Google Scholar]
  4. Fueshko S., Wray S. LHRH cells migrate on peripherin fibers in embryonic olfactory explant cultures: an in vitro model for neurophilic neuronal migration. Dev Biol. 1994 Nov;166(1):331–348. doi: 10.1006/dbio.1994.1319. [DOI] [PubMed] [Google Scholar]
  5. Hales T. G., Kim H., Longoni B., Olsen R. W., Tobin A. J. Immortalized hypothalamic GT1-7 neurons express functional gamma-aminobutyric acid type A receptors. Mol Pharmacol. 1992 Aug;42(2):197–202. [PubMed] [Google Scholar]
  6. Hales T. G., Sanderson M. J., Charles A. C. GABA has excitatory actions on GnRH-secreting immortalized hypothalamic (GT1-7) neurons. Neuroendocrinology. 1994 Mar;59(3):297–308. doi: 10.1159/000126671. [DOI] [PubMed] [Google Scholar]
  7. Jarry H., Leonhardt S., Wuttke W. Gamma-aminobutyric acid neurons in the preoptic/anterior hypothalamic area synchronize the phasic activity of the gonadotropin-releasing hormone pulse generator in ovariectomized rats. Neuroendocrinology. 1991 Mar;53(3):261–267. doi: 10.1159/000125727. [DOI] [PubMed] [Google Scholar]
  8. Kawakami M., Uemura T., Hayashi R. Electrophysiological correlates of pulsatile gonadotropin release in rats. Neuroendocrinology. 1982;35(1):63–67. doi: 10.1159/000123356. [DOI] [PubMed] [Google Scholar]
  9. Kelly M. J., Ronnekleiv O. K., Eskay R. L. Identification of estrogen-responsive LHRH neurons in the guinea pig hypothalamus. Brain Res Bull. 1984 Apr;12(4):399–407. doi: 10.1016/0361-9230(84)90112-6. [DOI] [PubMed] [Google Scholar]
  10. Knobil E. Patterns of hypophysiotropic signals and gonadotropin secretion in the rhesus monkey. Biol Reprod. 1981 Feb;24(1):44–49. doi: 10.1095/biolreprod24.1.44. [DOI] [PubMed] [Google Scholar]
  11. Krsmanović L. Z., Stojilković S. S., Merelli F., Dufour S. M., Virmani M. A., Catt K. J. Calcium signaling and episodic secretion of gonadotropin-releasing hormone in hypothalamic neurons. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8462–8466. doi: 10.1073/pnas.89.18.8462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Krsmanović L. Z., Stojilković S. S., Mertz L. M., Tomić M., Catt K. J. Expression of gonadotropin-releasing hormone receptors and autocrine regulation of neuropeptide release in immortalized hypothalamic neurons. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3908–3912. doi: 10.1073/pnas.90.9.3908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leranth C., MacLusky N. J., Sakamoto H., Shanabrough M., Naftolin F. Glutamic acid decarboxylase-containing axons synapse on LHRH neurons in the rat medial preoptic area. Neuroendocrinology. 1985 Jun;40(6):536–539. doi: 10.1159/000124127. [DOI] [PubMed] [Google Scholar]
  14. Llinás R. R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 1988 Dec 23;242(4886):1654–1664. doi: 10.1126/science.3059497. [DOI] [PubMed] [Google Scholar]
  15. Mahachoklertwattana P., Sanchez J., Kaplan S. L., Grumbach M. M. N-methyl-D-aspartate (NMDA) receptors mediate the release of gonadotropin-releasing hormone (GnRH) by NMDA in a hypothalamic GnRH neuronal cell line (GT1-1). Endocrinology. 1994 Mar;134(3):1023–1030. doi: 10.1210/endo.134.3.8119138. [DOI] [PubMed] [Google Scholar]
  16. Martínez de la Escalera G., Choi A. L., Weiner R. I. Beta 1-adrenergic regulation of the GT1 gonadotropin-releasing hormone (GnRH) neuronal cell lines: stimulation of GnRH release via receptors positively coupled to adenylate cyclase. Endocrinology. 1992 Sep;131(3):1397–1402. doi: 10.1210/endo.131.3.1354602. [DOI] [PubMed] [Google Scholar]
  17. Martínez de la Escalera G., Choi A. L., Weiner R. I. Generation and synchronization of gonadotropin-releasing hormone (GnRH) pulses: intrinsic properties of the GT1-1 GnRH neuronal cell line. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1852–1855. doi: 10.1073/pnas.89.5.1852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Martínez de la Escalera G., Gallo F., Choi A. L., Weiner R. I. Dopaminergic regulation of the GT1 gonadotropin-releasing hormone (GnRH) neuronal cell lines: stimulation of GnRH release via D1-receptors positively coupled to adenylate cyclase. Endocrinology. 1992 Dec;131(6):2965–2971. doi: 10.1210/endo.131.6.1280208. [DOI] [PubMed] [Google Scholar]
  19. Masotto C., Negro-Vilar A. Activation of gamma-aminobutyric acid B-receptors abolishes naloxone-stimulated luteinizing hormone release. Endocrinology. 1987 Dec;121(6):2251–2255. doi: 10.1210/endo-121-6-2251. [DOI] [PubMed] [Google Scholar]
  20. Mellon P. L., Windle J. J., Goldsmith P. C., Padula C. A., Roberts J. L., Weiner R. I. Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron. 1990 Jul;5(1):1–10. doi: 10.1016/0896-6273(90)90028-e. [DOI] [PubMed] [Google Scholar]
  21. Puil E., Meiri H., Yarom Y. Resonant behavior and frequency preferences of thalamic neurons. J Neurophysiol. 1994 Feb;71(2):575–582. doi: 10.1152/jn.1994.71.2.575. [DOI] [PubMed] [Google Scholar]
  22. Rudy B. Diversity and ubiquity of K channels. Neuroscience. 1988 Jun;25(3):729–749. doi: 10.1016/0306-4522(88)90033-4. [DOI] [PubMed] [Google Scholar]
  23. Schwanzel-Fukuda M., Pfaff D. W. Origin of luteinizing hormone-releasing hormone neurons. Nature. 1989 Mar 9;338(6211):161–164. doi: 10.1038/338161a0. [DOI] [PubMed] [Google Scholar]
  24. Spergel D. J., Krsmanovic L. Z., Stojilkovic S. S., Catt K. J. Glutamate modulates [Ca2+]i and gonadotropin-releasing hormone secretion in immortalized hypothalamic GT1-7 neurons. Neuroendocrinology. 1994 Apr;59(4):309–317. doi: 10.1159/000126672. [DOI] [PubMed] [Google Scholar]
  25. Terasawa E., Quanbeck C. D., Schulz C. A., Burich A. J., Luchansky L. L., Claude P. A primary cell culture system of luteinizing hormone releasing hormone neurons derived from embryonic olfactory placode in the rhesus monkey. Endocrinology. 1993 Nov;133(5):2379–2390. doi: 10.1210/endo.133.5.8404690. [DOI] [PubMed] [Google Scholar]
  26. Thompson S. H. Three pharmacologically distinct potassium channels in molluscan neurones. J Physiol. 1977 Feb;265(2):465–488. doi: 10.1113/jphysiol.1977.sp011725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wetsel W. C., Valença M. M., Merchenthaler I., Liposits Z., López F. J., Weiner R. I., Mellon P. L., Negro-Vilar A. Intrinsic pulsatile secretory activity of immortalized luteinizing hormone-releasing hormone-secreting neurons. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4149–4153. doi: 10.1073/pnas.89.9.4149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wilson R. C., Kesner J. S., Kaufman J. M., Uemura T., Akema T., Knobil E. Central electrophysiologic correlates of pulsatile luteinizing hormone secretion in the rhesus monkey. Neuroendocrinology. 1984 Sep;39(3):256–260. doi: 10.1159/000123988. [DOI] [PubMed] [Google Scholar]
  29. Wray S., Grant P., Gainer H. Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci U S A. 1989 Oct;86(20):8132–8136. doi: 10.1073/pnas.86.20.8132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wray S., Gähwiler B. H., Gainer H. Slice cultures of LHRH neurons in the presence and absence of brainstem and pituitary. Peptides. 1988 Sep-Oct;9(5):1151–1175. doi: 10.1016/0196-9781(88)90103-9. [DOI] [PubMed] [Google Scholar]
  31. Wray S., Kusano K., Gainer H. Maintenance of LHRH and oxytocin neurons in slice explants cultured in serum-free media: effects of tetrodotoxin on gene expression. Neuroendocrinology. 1991 Oct;54(4):327–339. doi: 10.1159/000125910. [DOI] [PubMed] [Google Scholar]
  32. Yarom Y. Rhythmogenesis in a hybrid system--interconnecting an olivary neuron to an analog network of coupled oscillators. Neuroscience. 1991;44(2):263–275. doi: 10.1016/0306-4522(91)90053-q. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES