Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2014 Oct 23;2(5):e01077-14. doi: 10.1128/genomeA.01077-14

Genome Sequences of Five Oenococcus oeni Strains Isolated from Nero Di Troia Wine from the Same Terroir in Apulia, Southern Italy

Vittorio Capozzi a, Pasquale Russo a, Antonella Lamontanara b, Luigi Orrù b, Luigi Cattivelli b, Giuseppe Spano a,
PMCID: PMC4208331  PMID: 25342687

Abstract

Oenococcus oeni is the principal lactic acid bacterium responsible for malolactic fermentation in wine. Here, we announce the genome sequences of five O. oeni strains isolated from Nero di Troia wine undergoing spontaneous malolactic fermentation, and we report, for the first time, several genome sequences of strains isolated from the same terroir.

GENOME ANNOUNCEMENT

Oenococcus oeni is the main species of lactic acid bacteria (LAB) responsible of driving malolactic fermentation (MLF) in wine. The key biochemical stage of MLF is the microbial decarboxylation of l-malic acid that leads to the production of l-lactic acid and CO2. MLF leads to a decrease in wine acidity and an improved microbial stability and sensorial quality (13). Increasing attention to the selection of autochthonous microbes from spontaneous fermentation is warranted to aid the design of specific starter cultures used in fermented foods and beverages with a geographical indication status (46). This is particularly true for the grape/wine environment, in which a relationship exists among cultivars, vintages, climates, and wine grape microbial biogeography, suggesting a possible dimension of the so-called microbial terroir (7, 8).

While the only fully complete genome sequence is available for the O. oeni PSU-1 strain (9), an increasing number of O. oeni assembled genome sequences also have been deposited in the GenBank database (1012). Moreover, for O. oeni strain ATCC BAA-1163, a proteome reference map is also available, which is useful for the validation of annotated genes (13).

Here, we present the genome sequences of five O. oeni strains (OM22, OT25, OT4, OT5, and OT3) isolated from Nero di Troia wine (a typical Apulian red wine obtained from uva di Troia, an autochthonous Apulian black grape variety) undergoing spontaneous malolactic fermentation (Table 1) (14).

TABLE 1.

Summary of information for the whole genomes of the five Oenococcus oeni strains OM22, OT25, OT4, OT5, and OT3

O. oeni strain G+C content (%) Genome size (bp) No. of genes No. of proteins Accession no. No. of contigs
OM22 38 1,862,817 1,895 1,772 JPEK00000000 23
OT25 37.9 1,834,661 1,845 1,731 JPEM00000000 61
OT4 37.9 1,779,962 1,776 1,654 JPEL00000000 55
OT5 37.8 1,767,097 1,775 1,655 JPEJ00000000 60
OT3 37.8 1,769,724 1,780 1,658 JOOH00000000 61

These new assembled complete genomes represent an important opportunity for assessing the molecular basis of (i) some safety aspects (1517), (ii) tolerance to the harsh wine conditions (18, 19), and (iii) the contribution to wine sensorial quality (2, 3, 20, 21). To the best of our knowledge, it is the first time that five strains isolated from the same terroir are sequenced.

Two micrograms of genomic DNA was subjected to library preparation using the TruSeq DNA sample prep kit FC-121-1001, according to the manufacturer’s instructions. Whole-genome sequencing was performed using the Illumina GAIIx platform. Prior to assembly, raw reads were filtered using the PrinSeq version 0.20.3 software (22) to remove low-quality 3′ ends (Q < 25), reads containing a percentage of uncalled bases (Ns) of ≥10%, and duplicated sequences. The genome sequences of O. oeni OM22 were de novo assembled using the Ray version 2.2.0 assembly program (23), with a k-mer size of 71. The genome sequences of O. oeni OT25, O. oeni OT4, O. oeni OT5, and O. oeni OT3 were de novo assembled using CLC Genomics Workbench 7.0, with a k-mer size of 64. The sequence was annotated by the National Center for Biotechnology Information (NCBI) Prokaryotic Genomes Annotation Pipeline. The genome information for each strain is summarized in Table 1.

Nucleotide sequence accession numbers.

The draft genome sequences of the O. oeni strains sequenced in this study have been deposited as whole-genome shotgun projects at DDBJ/EMBL/GenBank under the accession numbers JPEK00000000 (O. oeni OM22), JPEM00000000 (O. oeni OT25), JPEL00000000 (O. oeni OT4), JPEJ00000000 (O. oeni OT5), and JOOH00000000 (O. oeni OT3).

ACKNOWLEDGMENTS

This research was partially supported by a grant from the project PON02_00186_3417512, “Si.Mi.SA,” and by the Apulian Region in the framework of the “OenoMicroManagement” project (PIF—Progetti Integrati di Filiera no. 94750304571).

Footnotes

Citation Capozzi V, Russo P, Lamontanara A, Orrù L, Cattivelli L, Spano G. 2014. Genome sequences of five Oenococcus oeni strains isolated from Nero di Troia wine from the same terroir in Apulia, southern Italy. Genome Announc. 2(5):e01077-14. doi:10.1128/genomeA.01077-14.

REFERENCES

  • 1. Lonvaud-Funel A. 1999. Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwenhoek 76:317–331. 10.1023/A:1002088931106 [DOI] [PubMed] [Google Scholar]
  • 2. Bartowsky EJ, Borneman AR. 2011. Genomic variations of Oenococcus oeni strains and the potential to impact on malolactic fermentation and aroma compounds in wine. Appl. Microbiol. Biotechnol. 92:441–447. 10.1007/s00253-011-3546-2 [DOI] [PubMed] [Google Scholar]
  • 3. Bartowsky E. 2005. Oenococcus oeni and malolactic fermentation-moving into the molecular arena. Aust. J. Grape Wine Res. 11:174–187. 10.1111/j.1755-0238.2005.tb00286.x [DOI] [Google Scholar]
  • 4. Capozzi V, Spano G. 2011. Food microbial biodiversity and “microbes of protected origin.” Front. Microbiol. 2:237. 10.3389/fmicb.2011.00237 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Capozzi V, Spano G, Fiocco D. 2012. Transdisciplinarity and microbiology education. J. Microbiol. Biol. Educ. 13:70–73. 10.1128/jmbe.v13i1.365 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Capozzi V, Russo P, Spano G. 2012. Microbial information regimen in EU Geographical Indications. World Pat. Inf. 34:229–231. 10.1016/j.wpi.2012.04.001 [DOI] [Google Scholar]
  • 7. Bokulich NA, Thorngate JH, Richardson PM, Mills DA. 2014. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. U. S. A. 111:E139–E148. 10.1073/pnas.1317377110 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Gilbert JA, van der Lelie D, Zarraonaindia I. 2014. Microbial terroir for wine grapes. Proc. Natl. Acad. Sci. U. S. A. 111:5–6. 10.1073/pnas.1320471110 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Mills DA, Rawsthorne H, Parker C, Tamir D, Makarova K. 2005. Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol. Rev. 29:465–475. 10.1016/j.fmrre.2005.04.011 [DOI] [PubMed] [Google Scholar]
  • 10. Borneman AR, McCarthy JM, Chambers PJ, Bartowsky EJ. 2012. Comparative analysis of the Oenococcus oeni pan genome reveals genetic diversity in industrially-relevant pathways. BMC Genomics 13:373. 10.1186/1471-2164-13-373 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Dimopoulou M, Vuillemin M, Campbell-Sills H, Lucas PM, Ballestra P, Miot-Sertier C, Favier M, Coulon J, Moine V, Doco T, Roques M, Williams P, Petrel M, Gontier E, Moulis C, Remaud-Simeon M, Dols-Lafargue M. 2014. Exopolysaccharide (EPS) synthesis by Oenococcus oeni: from genes to phenotypes. PLoS One 9:e98898. 10.1371/journal.pone.0098898 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Lamontanara A, Orrù L, Cattivelli L, Russo P, Spano G, Capozzi V. 2014. Genome sequence of Oenococcus oeni OM27, the first fully assembled genome of a strain isolated from an Italian wine. Genome Announc. 2(4):e00658-14. 10.1128/genomeA.00658-14 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Mohedano MDLL, Russo P, de los Rios V, Capozzi V, Spano G, López P. 2014. A proteome reference map of the wine lactic acid bacteria Oenococcus oeni ATCC BAA-1163. Open Biol. 4 1–10. 10.1098/rsob.130154 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Capozzi V, Russo P, Beneduce L, Weidmann S, Grieco F, Guzzo J, Spano G. 2010. Technological properties of Oenococcus oeni strains isolated from typical southern Italian wines. Lett. Appl. Microbiol. 50:327–334. 10.1111/j.1472-765X.2010.02795.x [DOI] [PubMed] [Google Scholar]
  • 15. Spano G, Russo P, Lonvaud-Funel A, Lucas P, Alexandre H, Grandvalet C, Coton E, Coton M, Barnavon L, Bach B, Rattray F, Bunte A, Magni C, Ladero V, Alvarez M, Fernández M, Lopez P, de Palencia PF, Corbi A, Trip H, Lolkema JS. 2010. Biogenic amines in fermented foods. Eur. J. Clin. Nutr. 64(Suppl 3):95–100. 10.1038/ejcn.2010.218 [DOI] [PubMed] [Google Scholar]
  • 16. Capozzi V, Ladero V, Beneduce L, Fernández M, Alvarez MA, Benoit B, Laurent B, Grieco F, Spano G. 2011. Isolation and characterization of tyramine-producing Enterococcus faecium strains from red wine. Food Microbiol. 28:434–439. 10.1016/j.fm.2010.10.005 [DOI] [PubMed] [Google Scholar]
  • 17. Garcia-Moruno E, Muñoz R. 2012. Does Oenococcus oeni produce histamine? Int. J. Food Microbiol. 157:121–129. 10.1016/j.ijfoodmicro.2012.05.013 [DOI] [PubMed] [Google Scholar]
  • 18. Spano G, Massa S. 2006. Environmental stress response in wine lactic acid bacteria: beyond Bacillus subtilis. Crit. Rev. Microbiol. 32:77–86. 10.1080/10408410600709800 [DOI] [PubMed] [Google Scholar]
  • 19. Capozzi V, Russo P, Ladero V, Fernández M, Fiocco D, Alvarez MA, Grieco F, Spano G. 2012. Biogenic amines degradation by Lactobacillus plantarum: toward a potential application in wine. Front Microbiol. 3:122. 10.3389/fmicb.2012.00122 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Malherbe S, Menichelli E, du Toit M, Tredoux A, Muller N, Naes T, Nieuwoudt H. 2013. The relationships between consumer liking, sensory and chemical attributes of Vitis vinifera L. cv. Pinotage wines elaborated with different Oenococcus oeni starter cultures. J. Sci. Food Agric. 93:2829–2840. 10.1002/jsfa.6115 [DOI] [PubMed] [Google Scholar]
  • 21. Lerm E, Engelbrecht L, du Toit M. 2010. Malolactic fermentation: the ABC’s of MLF. S. Afr. J. Enol. Vitic. 31:186–212 [Google Scholar]
  • 22. Schmieder R, Edwards R. 2011. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864. 10.1093/bioinformatics/btr026 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Boisvert S, Laviolette F, Corbeil J. 2010. Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J. Comput. Biol. 17:1519–1533. 10.1089/cmb.2009.0238 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES