Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1977 May;16(2):628–636. doi: 10.1128/iai.16.2.628-636.1977

Isolation and partial characterization of plasma membranes from the livers of control and Streptococcus pneumoniae-infected rats.

J S Little
PMCID: PMC421003  PMID: 16827

Abstract

Plasma membranes were isolated from the livers of control and Streptococcus pneumoniae-infected rats. This work, therefore, represents the first isolation of plasma membranes from infected actron microscopy and by the use of enzyme markers for microsomes (glucose-6-phosphatase), mitochondria (glutamate and malate dehydrogenases), and lysosomes (acid phosphatase). Plasma membranes from infected cells banded at the same sucrose density as plasma membranes from uninfected cells. Moreover, equivalent amounts of plasma membranes could be isolated from control and infected rat livers. There were, however, significant alterations in the enzyme complement of the plasma membrane after infection. 5'-Nucleotidase activity was significantly decreased, whereas alkaline phosphatase activity was significantly increased. Kinetic analysis demonstrated that only the Vmax and not the Km of these two enzymes was changed, suggesting that the altered affinity of the enzymes for substrate was not the mechanism responsible for the observed alterations. No change in the mitochondrial enzyme markers was observed after infection, but the specific activity of microsomal glucose-6-phosphatase decreased significantly. Possible explanations for the observed alterations are discussed.

Full text

PDF
628

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. BOCK R. M., LING N. S., MORELL S. A., LIPTON S. H. Ultraviolet absorption spectra of adenosine-5'-triphosphate and related 5'-ribonucleotides. Arch Biochem Biophys. 1956 Jun;62(2):253–264. doi: 10.1016/0003-9861(56)90123-0. [DOI] [PubMed] [Google Scholar]
  3. Canonico P. G., White J. D., Powanda M. C. Peroxisome depletion in rat liver during pneumococcal sepsis. Lab Invest. 1975 Aug;33(2):147–150. [PubMed] [Google Scholar]
  4. Dallner G., Siekevitz P., Palade G. E. Biogenesis of endoplasmic reticulum membranes. II. Synthesis of constitutive microsomal enzymes in developing rat hepatocyte. J Cell Biol. 1966 Jul;30(1):97–117. doi: 10.1083/jcb.30.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DeChatelet L. R., Cooper M. R. A modified procedure for the determination of leukocyte alkaline phosphatase. Biochem Med. 1970 Aug;4(1):61–68. doi: 10.1016/0006-2944(70)90103-1. [DOI] [PubMed] [Google Scholar]
  6. DePierre J. W., Karnovsky M. L. Plasma membranes of mammalian cells: a review of methods for their characterization and isolation. J Cell Biol. 1973 Feb;56(2):275–303. doi: 10.1083/jcb.56.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dubois-Dalcq M., Reese T. S. Structural changes in the membrane of vero cells infected with a paramyxovirus. J Cell Biol. 1975 Dec;67(3):551–565. doi: 10.1083/jcb.67.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Emmelot P., Bos C. J. Studies on plasma membranes. II. K+-dependent p-nitrophenyl phosphatase activity of plasma membranes isolated from rat liver. Biochim Biophys Acta. 1966 Jun 29;121(2):375–385. [PubMed] [Google Scholar]
  9. Greengard O., Federman M., Knox W. E. Cytomorphometry of developing rat liver and its application to enzymic differentiation. J Cell Biol. 1972 Feb;52(2):261–272. doi: 10.1083/jcb.52.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gunderson H. M., Nordlie R. C. Carbamyl phosphate: glucose phosphotransferase and glucose-6-phosphate phosphohydrolase of nuclear membrane. Interrelationships between membrane integrity, enzymic latency, and catalytic behavior. J Biol Chem. 1975 May 10;250(9):3552–3559. [PubMed] [Google Scholar]
  11. Hoek J. B., Ernster L., de Haan E. J., Tager J. M. The nicotinamide nucleotide specificity of glutamate dehydrogenase in intact rat-liver mitochondria. Biochim Biophys Acta. 1974 Mar 26;333(3):546–559. doi: 10.1016/0005-2728(74)90138-8. [DOI] [PubMed] [Google Scholar]
  12. Howard R. B., Lee J. C., Pesch L. A. The fine structure, potassium content, and respiratory activity of isolated rat liver parenchymal cells prepared by improved enzymatic techniques. J Cell Biol. 1973 Jun;57(3):642–658. doi: 10.1083/jcb.57.3.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaaden O. R., Dietzschold B. Alterations of the immunological specificity of plasma membranes from cells infected with Marek's disease and turkey herpes viruses. J Gen Virol. 1974 Oct;25(1):1–10. doi: 10.1099/0022-1317-25-1-1. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Marco R., Sebastián J., Sols A. Location of the enzymes of the oxalacetate metabolic cross-roads in rat liver mitochondria. Biochem Biophys Res Commun. 1969 Mar 10;34(5):725–730. doi: 10.1016/0006-291x(69)90799-2. [DOI] [PubMed] [Google Scholar]
  16. Ninjoor V., Kumta U. S. Sedimentation & osmofragility characteristics of rat liver lysosomes--alterations caused by feeding protein-free diet to adult rats. Indian J Biochem Biophys. 1974 Sep;11(3):221–226. [PubMed] [Google Scholar]
  17. Pekarek R. S., Wannemacher R. W., Jr, Beisel W. R. The effect of leukocytic endogenous mediator (LEM) on the tissue distribution of zinc and iron. Proc Soc Exp Biol Med. 1972 Jun;140(2):685–688. doi: 10.3181/00379727-140-36531. [DOI] [PubMed] [Google Scholar]
  18. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ray T. K. A modified method for the isolation of the plasma membrane from rat liver. Biochim Biophys Acta. 1970 Jan 6;196(1):1–9. doi: 10.1016/0005-2736(70)90159-8. [DOI] [PubMed] [Google Scholar]
  20. Riemer B. L., Widnell C. C. The demonstration of a specific 5'-nucleotidase activity in rat tissues. Arch Biochem Biophys. 1975 Nov;171(1):343–347. doi: 10.1016/0003-9861(75)90041-7. [DOI] [PubMed] [Google Scholar]
  21. Rocha D. M., Santeusanio F., Faloona G. R., Unger R. H. Abnormal pancreatic alpha-cell function in bacterial infections. N Engl J Med. 1973 Apr 5;288(14):700–703. doi: 10.1056/NEJM197304052881402. [DOI] [PubMed] [Google Scholar]
  22. Ryan N. T., Blackburn G. L., Clowes H. A., Jr Differential tissue sensitivity to elevated endogenous insulin levels during experimental peritonitis in rats. Metabolism. 1974 Nov;23(11):1081–1089. doi: 10.1016/0026-0495(74)90075-4. [DOI] [PubMed] [Google Scholar]
  23. SWANSON M. A. Phosphatases of liver. I. Glucose-6-phosphatase. J Biol Chem. 1950 Jun;184(2):647–659. [PubMed] [Google Scholar]
  24. Salinas M., Wallace R., Grisolia S. Comparative studies in vivo and in vitro of rat-liver enzymes. Eur J Biochem. 1974 May 15;44(2):375–381. doi: 10.1111/j.1432-1033.1974.tb03494.x. [DOI] [PubMed] [Google Scholar]
  25. Takacs B. J., Rosenbusch J. P. Modification of Escherichia coli membranes in the prereplicative phase of phage T4 infection. Specificity of association and quantitation of bound phage proteins. J Biol Chem. 1975 Mar 25;250(6):2339–2350. [PubMed] [Google Scholar]
  26. WACHSTEIN M., MEISEL E. Histochemistry of hepatic phosphatases of a physiologic pH; with special reference to the demonstration of bile canaliculi. Am J Clin Pathol. 1957 Jan;27(1):13–23. doi: 10.1093/ajcp/27.1.13. [DOI] [PubMed] [Google Scholar]
  27. Wannemacher R. W., Jr, Pekarek R. S., Beisel W. R. Mediator of hepatic amino acid flux in infected rats. Proc Soc Exp Biol Med. 1972 Jan;139(1):128–132. doi: 10.3181/00379727-139-36094. [DOI] [PubMed] [Google Scholar]
  28. Widnell C. C. Cytochemical localization of 5'-nucleotidase in subcellular fractions isolated from rat liver. I. The origin of 5'-nucleotidase activity in microsomes. J Cell Biol. 1972 Mar;52(3):542–558. doi: 10.1083/jcb.52.3.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Widnell C. C. Purification of rat liver 5'-nucleotidase as a complex with sphingomyelin. Methods Enzymol. 1974;32:368–374. doi: 10.1016/0076-6879(74)32037-x. [DOI] [PubMed] [Google Scholar]
  30. Zenser T. V., DeRubertis F. R., George D. T., Rayfield E. J. Infection-induced hyperglucagonemia and altered hepatic response to glucagon in the rat. Am J Physiol. 1974 Dec;227(6):1299–1305. doi: 10.1152/ajplegacy.1974.227.6.1299. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES