Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1977 Oct;18(1):102–109. doi: 10.1128/iai.18.1.102-109.1977

Canine Migration Inhibitory Factor: Effect of Corynebacterium parvum Administration

Maya S Pineiro 1, Charles A Bowles 1, Ernest C Cutchins 2, Malcolm I Bull a,
PMCID: PMC421200  PMID: 332636

Abstract

Peripheral blood lymphocytes from dogs sensitized to streptolysin O (SLO) were assayed for migration inhibitory factor (MIF) production by the indirect MIF test, using guinea pig peritoneal exudate cells as the source of macrophages. A specific direct correlation was established between the degree of inhibition of migration and the concentration of SLO-stimulated supernatants from lymphocyte cultures (SLO-S) of untreated normal dogs. Undiluted SLO-S inhibited migration by 66.8%, whereas a dilution of 1:64 elicited a 3% inhibition. In parallel tests, purified protein derivative stimulation of lymphocytes from BCG-vaccinated dogs produced 92.6% inhibition. The effect of Corynebacterium parvum on SLO-specific MIF production was evaluated in three groups of dogs administered a single intramuscular injection of C. parvum at 5 or 50 mg/m2 or 50 mg/m2 in suspension with 10 mg of methylprednisolone. Inhibition of migration of macrophages exposed to a 1:4 dilution of SLO-S from dogs inoculated with C. parvum (5 mg/m2) was 33% greater (mean inhibition, 75%) than the same SLO-S dilution from uninoculated normal dogs (mean inhibition, 42%) (P < 0.0002). Similarly, lymphocytes from dogs administered 50 mg/m2 caused an enhancement of migration inhibition, with a mean increase of 26% over controls (P < 0.002), whereas a dose of 50 mg/m2 with methylprednisolone produced a 16% increase in migration inhibition (P < 0.05). The administration of C. parvum resulted in a three- to fourfold increase in the SLO-S dilution, which would reduce migration by 20% (MIF titer). This increase peaked between days 20 and 30 and lasted over 50 days post-C. parvum inoculation. These findings indicate that C. parvum specifically increases MIF production by canine lymphocytes in a linear correlation with SLO concentration and suggest its use as a stimulant of canine immunity.

Full text

PDF
102

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander P., Evans R., Grant C. K. The interplay of lymphoid cells and macrophages in tumour immunity. Ann Inst Pasteur (Paris) 1972 Apr;122(4):645–658. [PubMed] [Google Scholar]
  2. BOYUM A. SEPARATION OF WHITE BLOOD CELLS. Nature. 1964 Nov 21;204:793–794. doi: 10.1038/204793a0. [DOI] [PubMed] [Google Scholar]
  3. Bartlett G. L., Zbar B., Rapp H. J. Suppression of murine tumor growth by immune reaction to the Bacillus Calmette-Guérin strain of Mycobacterium bovis. J Natl Cancer Inst. 1972 Jan;48(1):245–257. [PubMed] [Google Scholar]
  4. Baum M., Breese M. Antitumour effect of corynebacterium parvum. Possible mode of action. Br J Cancer. 1976 Apr;33(4):468–473. doi: 10.1038/bjc.1976.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernstein I. D., Thor D. E., Zbar B., Rapp H. J. Tumor immunity: tumor suppression in vivo initiated by soluble products of specifically stimulated lymphocytes. Science. 1971 May 14;172(3984):729–731. doi: 10.1126/science.172.3984.729. [DOI] [PubMed] [Google Scholar]
  6. Biozzi G., Stiffel C., Mouton D., Bouthillier Y., Decreusefond C. Importance de l'immunité spécifique et non spécifique dans la défense antitumorale. Ann Inst Pasteur (Paris) 1972 Apr;122(4):685–694. [PubMed] [Google Scholar]
  7. Bloom B. R. In vitro approaches to the mechanism of cell-mediated immune reactions. Adv Immunol. 1971;13:101–208. doi: 10.1016/s0065-2776(08)60184-4. [DOI] [PubMed] [Google Scholar]
  8. Clausen J. E. Migration inhibitory effect of cell-free supernatants from tuberculin-stimulated cultures of human mononuclear leukocytes demonstrated by two-step MIF agarose assay. J Immunol. 1973 Feb;110(2):546–551. [PubMed] [Google Scholar]
  9. DAVID J. R., AL-ASKARI S., LAWRENCE H. S., THOMAS L. DELAYED HYPERSENSITIVITY IN VITRO. I. THE SPECIFICITY OF INHIBITION OF CELL MIGRATION BY ANTIGENS. J Immunol. 1964 Aug;93:264–273. [PubMed] [Google Scholar]
  10. David J. R., David R. R. Cellular hypersensitivity and immunity. Inhibition of macrophage migration and the lymphocyte mediators. Prog Allergy. 1972;16:300–449. [PubMed] [Google Scholar]
  11. Eccles S. A., Alexander P. Macrophage content of tumours in relation to metastatic spread and host immune reaction. Nature. 1974 Aug 23;250(5468):667–669. doi: 10.1038/250667a0. [DOI] [PubMed] [Google Scholar]
  12. Evans R., Grant C. K., Cox H., Steele K., Alexander P. Thymus-derived lymphocytes produce an immunologically specific macrophage-arming factor. J Exp Med. 1972 Nov 1;136(5):1318–1322. doi: 10.1084/jem.136.5.1318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fisher J. C., Grace W. R., Mannick J. A. The effect of nonspecific immune stimulation with corynebacterium parvum on patterns of tumor growth. Cancer. 1970 Dec;26(6):1379–1382. doi: 10.1002/1097-0142(197012)26:6<1379::aid-cncr2820260630>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
  14. GEORGE M., VAUGHAN J. H. In vitro cell migration as a model for delayed hypersensitivity. Proc Soc Exp Biol Med. 1962 Nov;111:514–521. doi: 10.3181/00379727-111-27841. [DOI] [PubMed] [Google Scholar]
  15. Gadol N., Waldman R. H., Clem L. W. Inhibition of macrophage migration by normal guinea pig intestinal secretions. Proc Soc Exp Biol Med. 1976 Apr;151(4):654–658. doi: 10.3181/00379727-151-39279. [DOI] [PubMed] [Google Scholar]
  16. Hawrylko E., Mackaness G. B. Immunopotentiation with BCG. 3. Modulation of the response to a tumor-specific antigen. J Natl Cancer Inst. 1973 Nov;51(5):1677–1682. doi: 10.1093/jnci/51.5.1677. [DOI] [PubMed] [Google Scholar]
  17. Herberman R. B. Cell-mediated immunity to tumor cells. Adv Cancer Res. 1974;19(0):207–263. doi: 10.1016/s0065-230x(08)60055-x. [DOI] [PubMed] [Google Scholar]
  18. Israel L. Preliminary results of nonspecific immunotherapy for lung cancer. Cancer Chemother Rep 3. 1973 Mar;4(2):283–286. [PubMed] [Google Scholar]
  19. Kelly R. H., Wolstencroft R. A., Dumonde D. C., Balfour B. M. Role of lymphocyte activation products (LAP) in cell-mediated immunity. II. Effects of lymphocyte activation products on lymph node architecture and evidence for peripheral release of LAP following antigenic stimulation. Clin Exp Immunol. 1972 Jan;10(1):49–65. [PMC free article] [PubMed] [Google Scholar]
  20. Klein E., Holtermann O. A., Case R. W., Milgrom H., Rosner D., Adler S. Responses of neoplasms to local immunotherapy. Am J Clin Pathol. 1974 Aug;62(2):281–289. doi: 10.1093/ajcp/62.2.281. [DOI] [PubMed] [Google Scholar]
  21. Kühner A. L., David J. R. Partial characterization of murine migration inhibitory factor (MIF). J Immunol. 1976 Jan;116(1):140–145. [PubMed] [Google Scholar]
  22. Lavrin D. H., Rosenberg S. A., Connor R. J., Terry W. D. Immunoprophylaxis of methylcholanthrene-induced tumors in mice with Bacillus Calmette-Guérin and methanol-extracted residue. Cancer Res. 1973 Mar;33(3):472–477. [PubMed] [Google Scholar]
  23. Mackaness G. B., Auclair D. J., Lagrange P. H. Immunopotentiation with BCG. I. Immune response to different strains and preparations. J Natl Cancer Inst. 1973 Nov;51(5):1655–1667. doi: 10.1093/jnci/51.5.1655. [DOI] [PubMed] [Google Scholar]
  24. Milas L., Hunter N., Mason K., Withers H. R. Immunological resistance to pulmonary metastases in C3Hf-Bu mice bearing syngeneic fibrosarcoma of different sizes. Cancer Res. 1974 Jan;34(1):61–71. [PubMed] [Google Scholar]
  25. Moertel C. G., Ritts R. E., Jr, Schutt A. J., Hahn R. G. Clinical studies of methanol extraction residue fraction of Bacillus Calmette-Guérin as an immunostimulant in patients with advanced cancer. Cancer Res. 1975 Nov;35(11 Pt 1):3075–3083. [PubMed] [Google Scholar]
  26. Nathan C. F., Karnovsky M. L., David J. R. Alterations of macrophage functions by mediators from lymphocytes. J Exp Med. 1971 Jun 1;133(6):1356–1376. doi: 10.1084/jem.133.6.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pilch Y. H., Golub S. H. Lymphocyte-mediated immune responses in neoplasia. Am J Clin Pathol. 1974 Aug;62(2):184–211. doi: 10.1093/ajcp/62.2.184. [DOI] [PubMed] [Google Scholar]
  28. Rocklin R. E., Remold H. G., David J. R. Characterization of human migration inhibitory factor (MIF) from antigen-stimulated lymphocytes. Cell Immunol. 1972 Nov;5(3):436–445. doi: 10.1016/0008-8749(72)90070-6. [DOI] [PubMed] [Google Scholar]
  29. Scott M. T. Corynebacterium parvum as a therapeutic antitumor agent in mice. I. Systemic effects from intravenous injection. J Natl Cancer Inst. 1974 Sep;53(3):855–860. doi: 10.1093/jnci/53.3.855. [DOI] [PubMed] [Google Scholar]
  30. Thor D. E., Jureziz R. E., Veach S. R., Miller E., Dray S. Cell migration inhibition factor released by antigen from human peripheral lymphocytes. Nature. 1968 Aug 17;219(5155):755–757. doi: 10.1038/219755a0. [DOI] [PubMed] [Google Scholar]
  31. Tompkins W. A., Zarling J. M., Rawls W. E. In vitro assessment of cellular immunity to vaccinia virus: contribution of lymphocytes and macrophages. Infect Immun. 1970 Dec;2(6):783–790. doi: 10.1128/iai.2.6.783-790.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tuttle R. L., North R. J. Mchanisms of antitumor action of Corynebacterium parvum: nonspecific tumor cell destruction at site of immunologically mediated sensitivity reaction to C. parvum. J Natl Cancer Inst. 1975 Dec;55(6):1403–1411. doi: 10.1093/jnci/55.6.1403. [DOI] [PubMed] [Google Scholar]
  33. Woodruff M. F., Boak J. L. Inhibitory effect of injection of Corynebacterium parvum on the growth of tumour transplants in isogenic hosts. Br J Cancer. 1966 Jun;20(2):345–355. doi: 10.1038/bjc.1966.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Woodruff M., Dunbar N., Ghaffar A. The growth of tumours in T-cell deprived mice and their response to treatment with Corynebacterium parvum. Proc R Soc Lond B Biol Sci. 1973 Aug 31;184(1074):97–102. doi: 10.1098/rspb.1973.0034. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES