Abstract
Peripheral blood lymphocytes from dogs sensitized to streptolysin O (SLO) were assayed for migration inhibitory factor (MIF) production by the indirect MIF test, using guinea pig peritoneal exudate cells as the source of macrophages. A specific direct correlation was established between the degree of inhibition of migration and the concentration of SLO-stimulated supernatants from lymphocyte cultures (SLO-S) of untreated normal dogs. Undiluted SLO-S inhibited migration by 66.8%, whereas a dilution of 1:64 elicited a 3% inhibition. In parallel tests, purified protein derivative stimulation of lymphocytes from BCG-vaccinated dogs produced 92.6% inhibition. The effect of Corynebacterium parvum on SLO-specific MIF production was evaluated in three groups of dogs administered a single intramuscular injection of C. parvum at 5 or 50 mg/m2 or 50 mg/m2 in suspension with 10 mg of methylprednisolone. Inhibition of migration of macrophages exposed to a 1:4 dilution of SLO-S from dogs inoculated with C. parvum (5 mg/m2) was 33% greater (mean inhibition, 75%) than the same SLO-S dilution from uninoculated normal dogs (mean inhibition, 42%) (P < 0.0002). Similarly, lymphocytes from dogs administered 50 mg/m2 caused an enhancement of migration inhibition, with a mean increase of 26% over controls (P < 0.002), whereas a dose of 50 mg/m2 with methylprednisolone produced a 16% increase in migration inhibition (P < 0.05). The administration of C. parvum resulted in a three- to fourfold increase in the SLO-S dilution, which would reduce migration by 20% (MIF titer). This increase peaked between days 20 and 30 and lasted over 50 days post-C. parvum inoculation. These findings indicate that C. parvum specifically increases MIF production by canine lymphocytes in a linear correlation with SLO concentration and suggest its use as a stimulant of canine immunity.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander P., Evans R., Grant C. K. The interplay of lymphoid cells and macrophages in tumour immunity. Ann Inst Pasteur (Paris) 1972 Apr;122(4):645–658. [PubMed] [Google Scholar]
- BOYUM A. SEPARATION OF WHITE BLOOD CELLS. Nature. 1964 Nov 21;204:793–794. doi: 10.1038/204793a0. [DOI] [PubMed] [Google Scholar]
- Bartlett G. L., Zbar B., Rapp H. J. Suppression of murine tumor growth by immune reaction to the Bacillus Calmette-Guérin strain of Mycobacterium bovis. J Natl Cancer Inst. 1972 Jan;48(1):245–257. [PubMed] [Google Scholar]
- Baum M., Breese M. Antitumour effect of corynebacterium parvum. Possible mode of action. Br J Cancer. 1976 Apr;33(4):468–473. doi: 10.1038/bjc.1976.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernstein I. D., Thor D. E., Zbar B., Rapp H. J. Tumor immunity: tumor suppression in vivo initiated by soluble products of specifically stimulated lymphocytes. Science. 1971 May 14;172(3984):729–731. doi: 10.1126/science.172.3984.729. [DOI] [PubMed] [Google Scholar]
- Biozzi G., Stiffel C., Mouton D., Bouthillier Y., Decreusefond C. Importance de l'immunité spécifique et non spécifique dans la défense antitumorale. Ann Inst Pasteur (Paris) 1972 Apr;122(4):685–694. [PubMed] [Google Scholar]
- Bloom B. R. In vitro approaches to the mechanism of cell-mediated immune reactions. Adv Immunol. 1971;13:101–208. doi: 10.1016/s0065-2776(08)60184-4. [DOI] [PubMed] [Google Scholar]
- Clausen J. E. Migration inhibitory effect of cell-free supernatants from tuberculin-stimulated cultures of human mononuclear leukocytes demonstrated by two-step MIF agarose assay. J Immunol. 1973 Feb;110(2):546–551. [PubMed] [Google Scholar]
- DAVID J. R., AL-ASKARI S., LAWRENCE H. S., THOMAS L. DELAYED HYPERSENSITIVITY IN VITRO. I. THE SPECIFICITY OF INHIBITION OF CELL MIGRATION BY ANTIGENS. J Immunol. 1964 Aug;93:264–273. [PubMed] [Google Scholar]
- David J. R., David R. R. Cellular hypersensitivity and immunity. Inhibition of macrophage migration and the lymphocyte mediators. Prog Allergy. 1972;16:300–449. [PubMed] [Google Scholar]
- Eccles S. A., Alexander P. Macrophage content of tumours in relation to metastatic spread and host immune reaction. Nature. 1974 Aug 23;250(5468):667–669. doi: 10.1038/250667a0. [DOI] [PubMed] [Google Scholar]
- Evans R., Grant C. K., Cox H., Steele K., Alexander P. Thymus-derived lymphocytes produce an immunologically specific macrophage-arming factor. J Exp Med. 1972 Nov 1;136(5):1318–1322. doi: 10.1084/jem.136.5.1318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher J. C., Grace W. R., Mannick J. A. The effect of nonspecific immune stimulation with corynebacterium parvum on patterns of tumor growth. Cancer. 1970 Dec;26(6):1379–1382. doi: 10.1002/1097-0142(197012)26:6<1379::aid-cncr2820260630>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
- GEORGE M., VAUGHAN J. H. In vitro cell migration as a model for delayed hypersensitivity. Proc Soc Exp Biol Med. 1962 Nov;111:514–521. doi: 10.3181/00379727-111-27841. [DOI] [PubMed] [Google Scholar]
- Gadol N., Waldman R. H., Clem L. W. Inhibition of macrophage migration by normal guinea pig intestinal secretions. Proc Soc Exp Biol Med. 1976 Apr;151(4):654–658. doi: 10.3181/00379727-151-39279. [DOI] [PubMed] [Google Scholar]
- Hawrylko E., Mackaness G. B. Immunopotentiation with BCG. 3. Modulation of the response to a tumor-specific antigen. J Natl Cancer Inst. 1973 Nov;51(5):1677–1682. doi: 10.1093/jnci/51.5.1677. [DOI] [PubMed] [Google Scholar]
- Herberman R. B. Cell-mediated immunity to tumor cells. Adv Cancer Res. 1974;19(0):207–263. doi: 10.1016/s0065-230x(08)60055-x. [DOI] [PubMed] [Google Scholar]
- Israel L. Preliminary results of nonspecific immunotherapy for lung cancer. Cancer Chemother Rep 3. 1973 Mar;4(2):283–286. [PubMed] [Google Scholar]
- Kelly R. H., Wolstencroft R. A., Dumonde D. C., Balfour B. M. Role of lymphocyte activation products (LAP) in cell-mediated immunity. II. Effects of lymphocyte activation products on lymph node architecture and evidence for peripheral release of LAP following antigenic stimulation. Clin Exp Immunol. 1972 Jan;10(1):49–65. [PMC free article] [PubMed] [Google Scholar]
- Klein E., Holtermann O. A., Case R. W., Milgrom H., Rosner D., Adler S. Responses of neoplasms to local immunotherapy. Am J Clin Pathol. 1974 Aug;62(2):281–289. doi: 10.1093/ajcp/62.2.281. [DOI] [PubMed] [Google Scholar]
- Kühner A. L., David J. R. Partial characterization of murine migration inhibitory factor (MIF). J Immunol. 1976 Jan;116(1):140–145. [PubMed] [Google Scholar]
- Lavrin D. H., Rosenberg S. A., Connor R. J., Terry W. D. Immunoprophylaxis of methylcholanthrene-induced tumors in mice with Bacillus Calmette-Guérin and methanol-extracted residue. Cancer Res. 1973 Mar;33(3):472–477. [PubMed] [Google Scholar]
- Mackaness G. B., Auclair D. J., Lagrange P. H. Immunopotentiation with BCG. I. Immune response to different strains and preparations. J Natl Cancer Inst. 1973 Nov;51(5):1655–1667. doi: 10.1093/jnci/51.5.1655. [DOI] [PubMed] [Google Scholar]
- Milas L., Hunter N., Mason K., Withers H. R. Immunological resistance to pulmonary metastases in C3Hf-Bu mice bearing syngeneic fibrosarcoma of different sizes. Cancer Res. 1974 Jan;34(1):61–71. [PubMed] [Google Scholar]
- Moertel C. G., Ritts R. E., Jr, Schutt A. J., Hahn R. G. Clinical studies of methanol extraction residue fraction of Bacillus Calmette-Guérin as an immunostimulant in patients with advanced cancer. Cancer Res. 1975 Nov;35(11 Pt 1):3075–3083. [PubMed] [Google Scholar]
- Nathan C. F., Karnovsky M. L., David J. R. Alterations of macrophage functions by mediators from lymphocytes. J Exp Med. 1971 Jun 1;133(6):1356–1376. doi: 10.1084/jem.133.6.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pilch Y. H., Golub S. H. Lymphocyte-mediated immune responses in neoplasia. Am J Clin Pathol. 1974 Aug;62(2):184–211. doi: 10.1093/ajcp/62.2.184. [DOI] [PubMed] [Google Scholar]
- Rocklin R. E., Remold H. G., David J. R. Characterization of human migration inhibitory factor (MIF) from antigen-stimulated lymphocytes. Cell Immunol. 1972 Nov;5(3):436–445. doi: 10.1016/0008-8749(72)90070-6. [DOI] [PubMed] [Google Scholar]
- Scott M. T. Corynebacterium parvum as a therapeutic antitumor agent in mice. I. Systemic effects from intravenous injection. J Natl Cancer Inst. 1974 Sep;53(3):855–860. doi: 10.1093/jnci/53.3.855. [DOI] [PubMed] [Google Scholar]
- Thor D. E., Jureziz R. E., Veach S. R., Miller E., Dray S. Cell migration inhibition factor released by antigen from human peripheral lymphocytes. Nature. 1968 Aug 17;219(5155):755–757. doi: 10.1038/219755a0. [DOI] [PubMed] [Google Scholar]
- Tompkins W. A., Zarling J. M., Rawls W. E. In vitro assessment of cellular immunity to vaccinia virus: contribution of lymphocytes and macrophages. Infect Immun. 1970 Dec;2(6):783–790. doi: 10.1128/iai.2.6.783-790.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuttle R. L., North R. J. Mchanisms of antitumor action of Corynebacterium parvum: nonspecific tumor cell destruction at site of immunologically mediated sensitivity reaction to C. parvum. J Natl Cancer Inst. 1975 Dec;55(6):1403–1411. doi: 10.1093/jnci/55.6.1403. [DOI] [PubMed] [Google Scholar]
- Woodruff M. F., Boak J. L. Inhibitory effect of injection of Corynebacterium parvum on the growth of tumour transplants in isogenic hosts. Br J Cancer. 1966 Jun;20(2):345–355. doi: 10.1038/bjc.1966.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodruff M., Dunbar N., Ghaffar A. The growth of tumours in T-cell deprived mice and their response to treatment with Corynebacterium parvum. Proc R Soc Lond B Biol Sci. 1973 Aug 31;184(1074):97–102. doi: 10.1098/rspb.1973.0034. [DOI] [PubMed] [Google Scholar]
