Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Apr 11;92(8):3194–3198. doi: 10.1073/pnas.92.8.3194

Sustained delivery of erythropoietin in mice by genetically modified skin fibroblasts.

N Naffakh 1, A Henri 1, J L Villeval 1, P Rouyer-Fessard 1, P Moullier 1, N Blumenfeld 1, O Danos 1, W Vainchenker 1, J M Heard 1, Y Beuzard 1
PMCID: PMC42132  PMID: 7724539

Abstract

We have examined whether the secretion of erythropoietin (Epo) from genetically modified cells could represent an alternative to repeated injections of the recombinant hormone for treating chronic anemias responsive to Epo. Primary mouse skin fibroblasts were transduced with a retroviral vector in which the murine Epo cDNA is expressed under the control of the murine phosphoglycerate kinase promoter. "Neo-organs" containing the genetically modified fibroblasts embedded into collagen lattices were implanted into the peritoneal cavity of mice. Increased hematocrit (> 80%) and elevated serum Epo concentration (ranging from 60 to 408 milliunits/ml) were observed in recipient animals over a 10-month observation period. Hematocrit values measured in recipient mice varied according to the number of implanted Epo-secreting fibroblasts (ranging from 2.5 to 20 x 10(6)). The implantation of neo-organs containing Epo-secreting fibroblasts appeared, therefore, as a convenient method to achieve permanent in vivo delivery of the hormone. We estimated that the biological efficacy of the approach may be relevant for the treatment of human hemoglobinopathies.

Full text

PDF
3194

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson J. W., Eschbach J. W. The use of recombinant human erythropoietin in humans. Ciba Found Symp. 1990;148:186–200. doi: 10.1002/9780470513880.ch13. [DOI] [PubMed] [Google Scholar]
  2. Danos O., Mulligan R. C. Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6460–6464. doi: 10.1073/pnas.85.17.6460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Erslev A. J. Erythropoietin. N Engl J Med. 1991 May 9;324(19):1339–1344. doi: 10.1056/NEJM199105093241907. [DOI] [PubMed] [Google Scholar]
  4. Eschbach J. W., Kelly M. R., Haley N. R., Abels R. I., Adamson J. W. Treatment of the anemia of progressive renal failure with recombinant human erythropoietin. N Engl J Med. 1989 Jul 20;321(3):158–163. doi: 10.1056/NEJM198907203210305. [DOI] [PubMed] [Google Scholar]
  5. Guild B. C., Finer M. H., Housman D. E., Mulligan R. C. Development of retrovirus vectors useful for expressing genes in cultured murine embryonal cells and hematopoietic cells in vivo. J Virol. 1988 Oct;62(10):3795–3801. doi: 10.1128/jvi.62.10.3795-3801.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Koury M. J., Bondurant M. C. The molecular mechanism of erythropoietin action. Eur J Biochem. 1992 Dec 15;210(3):649–663. doi: 10.1111/j.1432-1033.1992.tb17466.x. [DOI] [PubMed] [Google Scholar]
  7. Koury S. T., Bondurant M. C., Koury M. J. Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood. 1988 Feb;71(2):524–527. [PubMed] [Google Scholar]
  8. Krantz S. B. Erythropoietin. Blood. 1991 Feb 1;77(3):419–434. [PubMed] [Google Scholar]
  9. Leroy-Viard K., Rouyer-Fessard P., Beuzard Y. Improvement of mouse beta-thalassemia by recombinant human erythropoietin. Blood. 1991 Sep 15;78(6):1596–1602. [PubMed] [Google Scholar]
  10. Moullier P., Bohl D., Heard J. M., Danos O. Correction of lysosomal storage in the liver and spleen of MPS VII mice by implantation of genetically modified skin fibroblasts. Nat Genet. 1993 Jun;4(2):154–159. doi: 10.1038/ng0693-154. [DOI] [PubMed] [Google Scholar]
  11. Moullier P., Maréchal V., Danos O., Heard J. M. Continuous systemic secretion of a lysosomal enzyme by genetically modified mouse skin fibroblasts. Transplantation. 1993 Aug;56(2):427–432. doi: 10.1097/00007890-199308000-00034. [DOI] [PubMed] [Google Scholar]
  12. Olivieri N. F., Freedman M. H., Perrine S. P., Dover G. J., Sheridan B., Essentine D. L., Nagel R. L. Trial of recombinant human erythropoietin: three patients with thalassemia intermedia. Blood. 1992 Dec 15;80(12):3258–3260. [PubMed] [Google Scholar]
  13. Palmer T. D., Rosman G. J., Osborne W. R., Miller A. D. Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1330–1334. doi: 10.1073/pnas.88.4.1330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rachmilewitz E. A., Goldfarb A., Dover G. Administration of erythropoietin to patients with beta-thalassemia intermedia: a preliminary trial. Blood. 1991 Aug 15;78(4):1145–1147. [PubMed] [Google Scholar]
  15. Rodgers G. P., Dover G. J., Uyesaka N., Noguchi C. T., Schechter A. N., Nienhuis A. W. Augmentation by erythropoietin of the fetal-hemoglobin response to hydroxyurea in sickle cell disease. N Engl J Med. 1993 Jan 14;328(2):73–80. doi: 10.1056/NEJM199301143280201. [DOI] [PubMed] [Google Scholar]
  16. Sakaguchi M., Koishihara Y., Tsuda H., Fujimoto K., Shibuya K., Kawakita M., Takatsuki K. The expression of functional erythropoietin receptors on an interleukin-3 dependent cell line. Biochem Biophys Res Commun. 1987 Jul 15;146(1):7–12. doi: 10.1016/0006-291x(87)90682-6. [DOI] [PubMed] [Google Scholar]
  17. Scharfmann R., Axelrod J. H., Verma I. M. Long-term in vivo expression of retrovirus-mediated gene transfer in mouse fibroblast implants. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4626–4630. doi: 10.1073/pnas.88.11.4626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shoemaker C. B., Mitsock L. D. Murine erythropoietin gene: cloning, expression, and human gene homology. Mol Cell Biol. 1986 Mar;6(3):849–858. doi: 10.1128/mcb.6.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. St Louis D., Verma I. M. An alternative approach to somatic cell gene therapy. Proc Natl Acad Sci U S A. 1988 May;85(9):3150–3154. doi: 10.1073/pnas.85.9.3150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tambourin P., Casadevall N., Choppin J., Lacombe C., Heard J. M., Fichelson S., Wendling F., Varet B. Production of erythropoietin-like activity by a murine erythroleukemia cell line. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6269–6273. doi: 10.1073/pnas.80.20.6269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Villeval J. L., Rouyer-Fessard P., Blumenfeld N., Henri A., Vainchenker W., Beuzard Y. Retrovirus-mediated transfer of the erythropoietin gene in hematopoietic cells improves the erythrocyte phenotype in murine beta-thalassemia. Blood. 1994 Aug 1;84(3):928–933. [PubMed] [Google Scholar]
  22. Wright W. E., Sassoon D. A., Lin V. K. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell. 1989 Feb 24;56(4):607–617. doi: 10.1016/0092-8674(89)90583-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES