Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1977 Jan;15(1):230–238. doi: 10.1128/iai.15.1.230-238.1977

Hemagglutinating activity of Fusobacterium nucleatum.

W A Falkler Jr, C E Hawley
PMCID: PMC421353  PMID: 401771

Abstract

Gingival isolates of oral Fusobacterium nucleatum strains (gram-negative anaerobic fusiform bacilli) have shown the characteristic ability to hemagglutinate a variety of erythrocytes (RBC) of human and animal origin. Other members of the genus tested (F. necrophorus, F. varium, and F. mortiferum) displayed little if any ability to hemagglutinate RBC. The hemagglutination (HA) activity could be observed in the F. nucleatum strains with the whole cells and in most instances with sonicated preparations of the organisms. The HA activity was observed in cell wall preparations of the organism and appeared dependent upon a heat-labile protein component of the cell wall. In decreasing order, the RBC that would hemagglutinate with the smallest concentration of HA preparations were rabbit, monkey, human, sheep, horse, and ox. No differences in HA activity of the preparations with cells from the various human blood types were noted. Absorption of the HA preparation of one strain with human cells removed HA moiety was bound to the cells via a Ca2+ binding site interaction since ethylenediaminetetraacetic acid and ethylene glycol-bis-N,N'-tetraacetic acid inhibited binding, and HA could be reestablished by the addition of Ca2+ but not Mg2+. Rabbit antisera to the F. nucleatum strains inhibited HA activity when tested with the HA preparation in the standard test, whereas anti-Leptotrichia buccalis sera or normal rabbit sera had no effect. A tanned-cell passive HA test with rabbit anti-F. nucleatum sera displayed reactivity between the homologous strains but little reactivity with the other Fusobacterium species tested.

Full text

PDF
230

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRINTON C. C., Jr Non-flagellar appendages of bacteria. Nature. 1959 Mar 21;183(4664):782–786. doi: 10.1038/183782a0. [DOI] [PubMed] [Google Scholar]
  2. COETZEE J. N., PERNET G. Fimbriae and haemagglutinating properties in strains of Proteus. Nature. 1962 Nov 3;196:497–498. doi: 10.1038/196497a0. [DOI] [PubMed] [Google Scholar]
  3. Crawford Y. E., Nalewaik R. P., Lytle R. I., O'Connell J. L. Hemagglutinin from the L phase of Neisseria meningitidis group B, with observations on a serum inhibitor. Infect Immun. 1971 Sep;4(3):212–219. doi: 10.1128/iai.4.3.212-219.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DUGUID J. P., SMITH I. W., DEMPSTER G., EDMUNDS P. N. Non-flagellar filamentous appendages (fimbriae) and haemagglutinating activity in Bacterium coli. J Pathol Bacteriol. 1955 Oct;70(2):335–348. doi: 10.1002/path.1700700210. [DOI] [PubMed] [Google Scholar]
  5. Freedman M. L., Tanzer J. M. Dissociation of plaque formation from glucan-induced agglutination in mutants of Streptococcus mutans. Infect Immun. 1974 Jul;10(1):189–196. doi: 10.1128/iai.10.1.189-196.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Garcia M. M., Alexander D. C., McKay K. A. Biological characterization of Fusobacterium necrophorum. Cell fractions in preparation for toxin and immunization studies. Infect Immun. 1975 Apr;11(4):609–616. doi: 10.1128/iai.11.4.609-616.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibbons R. J., Banghart S. B. Synthesis of extracellular dextran by cariogenic bacteria and its presence in human dental plaque. Arch Oral Biol. 1967 Jan;12(1):11–23. doi: 10.1016/0003-9969(67)90137-9. [DOI] [PubMed] [Google Scholar]
  8. Gibbons R. J., Fitzgerald R. J. Dextran-induced agglutination of Streptococcus mutans, and its potential role in the formation of microbial dental plaques. J Bacteriol. 1969 May;98(2):341–346. doi: 10.1128/jb.98.2.341-346.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gibbons R. J., van Houte J. On the formation of dental plaques. J Periodontol. 1973 Jun;44(6):347–360. doi: 10.1902/jop.1973.44.6.347. [DOI] [PubMed] [Google Scholar]
  10. Gibbons R. J., van Houte J. Selective bacterial adherence to oral epithelial surfaces and its role as an ecological determinant. Infect Immun. 1971 Apr;3(4):567–573. doi: 10.1128/iai.3.4.567-573.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guggenheim B., Schroeder H. E. Biochemical and morphological aspects of extracellular polysaccharides produced by cariogenic streptococci. Helv Odontol Acta. 1967 Oct;11(2):131–152. [PubMed] [Google Scholar]
  12. Kashket S., Donaldson C. G. Saliva-induced aggregation of oral streptococci. J Bacteriol. 1972 Dec;112(3):1127–1133. doi: 10.1128/jb.112.3.1127-1133.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koransky J. R., Scales R. W., Kraus S. J. Bacterial hemagglutination by Neisseria gonorrhoeae. Infect Immun. 1975 Sep;12(3):495–498. doi: 10.1128/iai.12.3.495-498.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. McCabe M. M., Smith E. E. Relationship between cell-bound dextransucrase and the agglutination of Streptococcus mutans. Infect Immun. 1975 Sep;12(3):512–520. doi: 10.1128/iai.12.3.512-520.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mukasa H., Slade H. D. Mechanism of adherence of Streptococcus mutans to smooth surfaces. I. Roles of insoluble dextran-levan synthetase enzymes and cell wall polysaccharide antigen in plaque formation. Infect Immun. 1973 Oct;8(4):555–562. doi: 10.1128/iai.8.4.555-562.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mukasa H., Slade H. D. Mechanism of adherence of Streptococcus mutans to smooth surfaces. II. Nature of the binding site and the adsorption of dextran-levan synthetase enzymes on the cell-wall surface of the streptococcus. Infect Immun. 1974 Feb;9(2):419–429. doi: 10.1128/iai.9.2.419-429.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nalbandian J., Freedman M. L., Tanzer J. M., Lovelace S. M. Ultrastructure of Mutants of Streptococcus mutans with Reference to Agglutination, Adhesion, and Extracellular Polysaccharide. Infect Immun. 1974 Nov;10(5):1170–1179. doi: 10.1128/iai.10.5.1170-1179.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Okuda K., Takazoe I. Haemagglutinating activity of Bacteroides melaninogenicus. Arch Oral Biol. 1974 May;19(5):415–416. doi: 10.1016/0003-9969(74)90184-8. [DOI] [PubMed] [Google Scholar]
  20. Stauffer L. R., Hill E. O., Holland J. W., Altemeier W. A. Indirect fluorescent antibody procedure for the rapid detection and identification of Bacteroides and Fusobacterium in clinical specimens. J Clin Microbiol. 1975 Oct;2(4):337–344. doi: 10.1128/jcm.2.4.337-344.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Williams R. C., Gibbons R. J. Inhibition of streptococcal attachment to receptors on human buccal epithelial cells by antigenically similar salivary glycoproteins. Infect Immun. 1975 Apr;11(4):711–718. doi: 10.1128/iai.11.4.711-718.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yanagawa R., Otsuki K. Some properties of the pili of Corynebacterium renale. J Bacteriol. 1970 Mar;101(3):1063–1069. doi: 10.1128/jb.101.3.1063-1069.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. da Costa T., Bier L. C., Gaida F. Dextran hydrolysis by a Fusobacterium strain isolated from human dental plaque. Arch Oral Biol. 1974 Apr;19(4):341–342. doi: 10.1016/0003-9969(74)90200-3. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES