Abstract
The adenosine triphosphatase (ATPase) activities of human polymorphonuclear leukocytes (PMNL) were studied with an assay that monitored the release of 32P-labeled inorganic pyrophosphate (32P1) from gamma-[32P]adenosine 5'-triphosphate (ATP). In cell homogenates, (Na+ + K+)-sensitive, ouabain-inhibitable ATPase comprised an insignificant fraction of the total ATPase activity. Additions of p-nitrophenyl phosphate and beta-glycerophosphate (substrates for nonspecific acid and alkaline phosphatases) and of tartrate (inhibitor of acid phosphatase) gave no indication of inhibition. This suggested that the assay was relatively specific for ATP hydrolysis. The activity was found to have a pH optimum of 8.7 and a Km for ATP of 0.6 mM. There was an absolute requirement for Mg2+, with other divalent cations substituting less efficiently. When the Mg2+-dependent ATPase activity of intact cells was compared with that in homogenized cells, no significant difference was observed. The activity in intact cells was linear with respect to incubation time up to at least l0 min. Trypan blue staining and lactate dehydrogenase assays revealed that greater than 92% of the PMNL remained intact and viable during the assay. No soluble ATPase was released from the cells under assay conditions. In following the distribution of gamma[32P]ATP and 32P2 counts became cell associated. Since the experimental evidence supports the observation that PMNL remain intact and viable and that ATP does not penetrate the cell under assay conditions, it is proposed that greater than 90% of the Mg2+-dependent ATPase of the human PMNL is associated with a plasma membrnae enzyme. This would qualify the enzyme for the role of a plasma membrane marker for future fractionation and isolation attempts.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chambers D. A., Salzman E. W., Neri L. L. Characterization of "ecto-ATPase" of human blood platelets. Arch Biochem Biophys. 1967 Mar;119(1):173–178. doi: 10.1016/0003-9861(67)90444-4. [DOI] [PubMed] [Google Scholar]
- Cline M. J. Metabolism of the circulating leukocyte. Physiol Rev. 1965 Oct;45(4):674–720. doi: 10.1152/physrev.1965.45.4.674. [DOI] [PubMed] [Google Scholar]
- Coffey R. G., Hadden J. W., Middleton E., Jr Increased adenosine triphosphatase in leukocytes of asthmatic children. J Clin Invest. 1974 Jul;54(1):138–146. doi: 10.1172/JCI107735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeChatelet L. R., McPhail L. C., Mullikin D., McCall C. E. An isotopic assay for NADPH oxidase activity and some characteristics of the enzyme from human polymorphonuclear leukocytes. J Clin Invest. 1975 Apr;55(4):714–721. doi: 10.1172/JCI107981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DePierre J. W., Karnovsky M. L. Ecto-enzyme of granulocytes: 5'-nucleotidase. Science. 1974 Mar 15;183(4129):1096–1098. doi: 10.1126/science.183.4129.1096. [DOI] [PubMed] [Google Scholar]
- DePierre J. W., Karnovsky M. L. Ecto-enzymes of the guinea pig polymorphonuclear leukocyte. I. Evidence for an ecto-adenosine monophosphatase, adenosine triphosphatase, and -p-nitrophenyl phosphates. J Biol Chem. 1974 Nov 25;249(22):7111–7120. [PubMed] [Google Scholar]
- DePierre J. W., Karnovsky M. L. Ecto-enzymes of the guinea pig polymorphonuclear leukocyte. II. Properties and suitability as markers for the plasma membrane. J Biol Chem. 1974 Nov 25;249(22):7121–7129. [PubMed] [Google Scholar]
- DePierre J. W., Karnovsky M. L. Plasma membranes of mammalian cells: a review of methods for their characterization and isolation. J Cell Biol. 1973 Feb;56(2):275–303. doi: 10.1083/jcb.56.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FALLON H. J., FREI E., 3rd, DAVIDSON J. D., TRIER J. S., BURK D. Leukocyte preparations from human blood: evaluation of their morphologic and metabolic state. J Lab Clin Med. 1962 May;59:779–791. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lichtman M. A., Weed R. I. The monovalent cation content and adenosine triphosphatase activity of human normal and leukemic granulocytes and lymphocytes: relationship to cell volume and morphologic age. Blood. 1969 Nov;34(5):645–660. [PubMed] [Google Scholar]
- Medzihradsky F., Lin H. L., Marks M. J. Drug inhibitable ecta-ATPase in leukocytes. Life Sci. 1975 May 1;16(9):1417–1427. doi: 10.1016/0024-3205(75)90038-7. [DOI] [PubMed] [Google Scholar]
- Najjar V. A., Nishioka K. "Tuftsin": a natural phagocytosis stimulating peptide. Nature. 1970 Nov 14;228(5272):672–673. doi: 10.1038/228672a0. [DOI] [PubMed] [Google Scholar]
- Schatz G., Racker E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. VII. Oxidative phosphorylation in the diphosphopyridine nucleotide-cytochrome b segment of the respiratory chain: assay and properties in submitochondrial particles. J Biol Chem. 1966 Mar 25;241(6):1429–1438. [PubMed] [Google Scholar]
- Shirley P. S., Wang P., DeChatelet L. R., Waite M. Absence of the membrane marker enzyme 5'-nucleotidase in human polymorphonuclear leukocytes. Biochem Med. 1976 Jun;15(3):289–295. doi: 10.1016/0006-2944(76)90060-0. [DOI] [PubMed] [Google Scholar]
- Spitznagel J. K., Dalldorf F. G., Leffell M. S., Folds J. D., Welsh I. R., Cooney M. H., Martin L. E. Character of azurophil and specific granules purified from human polymorphonuclear leukocytes. Lab Invest. 1974 Jun;30(6):774–785. [PubMed] [Google Scholar]
- Strauss R. G., Burrows S. E. Letter: Activity of 5'nucleotidase in polymorphonuclear leukocytes. Blood. 1975 Oct;46(4):655–656. [PubMed] [Google Scholar]
- Wang P., Shirley P. S., DeChatelet L. R., McCall C. E., Waite B. M. Purification of plasma membrane from BCG-induced rabbit alveolar macrophages. J Reticuloendothel Soc. 1976 Jun;19(6):333–345. [PubMed] [Google Scholar]