Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Apr 11;92(8):3244–3248. doi: 10.1073/pnas.92.8.3244

Calmodulin is a selective mediator of Ca(2+)-induced Ca2+ release via the ryanodine receptor-like Ca2+ channel triggered by cyclic ADP-ribose.

Y Tanaka 1, A H Tashjian Jr 1
PMCID: PMC42142  PMID: 7724546

Abstract

The ryanodine receptor-like Ca2+ channel (RyRLC) is responsible for Ca2+ wave propagation and Ca2+ oscillations in certain nonmuscle cells by a Ca(2+)-induced Ca2+ release (CICR) mechanism. Cyclic ADP-ribose (cADPR), an enzymatic product derived from NAD+, is the only known endogenous metabolite that acts as an agonist on the RyRLC. However, the mode of action of cADPR is not clear. We have identified calmodulin as a functional mediator of cADPR-triggered CICR through the RyRLC in sea urchin eggs. cADPR-induced Ca2+ release consisted of two phases, an initial rapid release phase and a subsequent slower release. The second phase was selectively potentiated by calmodulin which, in turn, was activated by Ca2+ released during the initial phase. Caffeine enhanced the action of calmodulin. Calmodulin did not play a role in inositol 1,4,5-trisphosphate-induced Ca2+ release. These findings offer insights into the multiple pathways that regulate intracellular Ca2+ signaling.

Full text

PDF
3244

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Calcium oscillations. J Biol Chem. 1990 Jun 15;265(17):9583–9586. [PubMed] [Google Scholar]
  2. Berridge M. J. Cell signalling. A tale of two messengers. Nature. 1993 Sep 30;365(6445):388–389. doi: 10.1038/365388a0. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J., Galione A. Cytosolic calcium oscillators. FASEB J. 1988 Dec;2(15):3074–3082. doi: 10.1096/fasebj.2.15.2847949. [DOI] [PubMed] [Google Scholar]
  4. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  5. Clapper D. L., Lee H. C. Inositol trisphosphate induces calcium release from nonmitochondrial stores i sea urchin egg homogenates. J Biol Chem. 1985 Nov 15;260(26):13947–13954. [PubMed] [Google Scholar]
  6. Clapper D. L., Walseth T. F., Dargie P. J., Lee H. C. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem. 1987 Jul 15;262(20):9561–9568. [PubMed] [Google Scholar]
  7. Galione A. Cyclic ADP-ribose, the ADP-ribosyl cyclase pathway and calcium signalling. Mol Cell Endocrinol. 1994 Jan;98(2):125–131. doi: 10.1016/0303-7207(94)90130-9. [DOI] [PubMed] [Google Scholar]
  8. Galione A., Lee H. C., Busa W. B. Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science. 1991 Sep 6;253(5024):1143–1146. doi: 10.1126/science.1909457. [DOI] [PubMed] [Google Scholar]
  9. Galione A., McDougall A., Busa W. B., Willmott N., Gillot I., Whitaker M. Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs. Science. 1993 Jul 16;261(5119):348–352. doi: 10.1126/science.8392748. [DOI] [PubMed] [Google Scholar]
  10. Galione A. Response. Science. 1993 Oct 22;262(5133):585–586. doi: 10.1126/science.262.5133.585-a. [DOI] [PubMed] [Google Scholar]
  11. Hidaka H., Tanaka T. Naphthalenesulfonamides as calmodulin antagonists. Methods Enzymol. 1983;102:185–194. doi: 10.1016/s0076-6879(83)02019-4. [DOI] [PubMed] [Google Scholar]
  12. Islam M. S., Larsson O., Berggren P. O. Cyclic ADP-ribose in beta cells. Science. 1993 Oct 22;262(5133):584–586. doi: 10.1126/science.8211188. [DOI] [PubMed] [Google Scholar]
  13. Koshiyama H., Lee H. C., Tashjian A. H., Jr Novel mechanism of intracellular calcium release in pituitary cells. J Biol Chem. 1991 Sep 15;266(26):16985–16988. [PubMed] [Google Scholar]
  14. Lai F. A., Dent M., Wickenden C., Xu L., Kumari G., Misra M., Lee H. B., Sar M., Meissner G. Expression of a cardiac Ca(2+)-release channel isoform in mammalian brain. Biochem J. 1992 Dec 1;288(Pt 2):553–564. doi: 10.1042/bj2880553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee H. C., Aarhus R., Graeff R., Gurnack M. E., Walseth T. F. Cyclic ADP ribose activation of the ryanodine receptor is mediated by calmodulin. Nature. 1994 Jul 28;370(6487):307–309. doi: 10.1038/370307a0. [DOI] [PubMed] [Google Scholar]
  16. Lee H. C., Aarhus R., Walseth T. F. Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science. 1993 Jul 16;261(5119):352–355. doi: 10.1126/science.8392749. [DOI] [PubMed] [Google Scholar]
  17. Lee H. C., Walseth T. F., Bratt G. T., Hayes R. N., Clapper D. L. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J Biol Chem. 1989 Jan 25;264(3):1608–1615. [PubMed] [Google Scholar]
  18. McPherson P. S., Campbell K. P. The ryanodine receptor/Ca2+ release channel. J Biol Chem. 1993 Jul 5;268(19):13765–13768. [PubMed] [Google Scholar]
  19. Meissner G. Evidence of a role for calmodulin in the regulation of calcium release from skeletal muscle sarcoplasmic reticulum. Biochemistry. 1986 Jan 14;25(1):244–251. doi: 10.1021/bi00349a034. [DOI] [PubMed] [Google Scholar]
  20. Meyer T., Wensel T., Stryer L. Kinetics of calcium channel opening by inositol 1,4,5-trisphosphate. Biochemistry. 1990 Jan 9;29(1):32–37. doi: 10.1021/bi00453a004. [DOI] [PubMed] [Google Scholar]
  21. Mészáros L. G., Bak J., Chu A. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature. 1993 Jul 1;364(6432):76–79. doi: 10.1038/364076a0. [DOI] [PubMed] [Google Scholar]
  22. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  23. Payne M. E., Fong Y. L., Ono T., Colbran R. J., Kemp B. E., Soderling T. R., Means A. R. Calcium/calmodulin-dependent protein kinase II. Characterization of distinct calmodulin binding and inhibitory domains. J Biol Chem. 1988 May 25;263(15):7190–7195. [PubMed] [Google Scholar]
  24. Plutner H., Davidson H. W., Saraste J., Balch W. E. Morphological analysis of protein transport from the ER to Golgi membranes in digitonin-permeabilized cells: role of the P58 containing compartment. J Cell Biol. 1992 Dec;119(5):1097–1116. doi: 10.1083/jcb.119.5.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stoclet J. C., Gérard D., Kilhoffer M. C., Lugnier C., Miller R., Schaeffer P. Calmodulin and its role in intracellular calcium regulation. Prog Neurobiol. 1987;29(4):321–364. doi: 10.1016/0301-0082(87)90018-9. [DOI] [PubMed] [Google Scholar]
  26. Takasawa S., Nata K., Yonekura H., Okamoto H. Cyclic ADP-ribose in insulin secretion from pancreatic beta cells. Science. 1993 Jan 15;259(5093):370–373. doi: 10.1126/science.8420005. [DOI] [PubMed] [Google Scholar]
  27. Takasawa S., Nata K., Yonekura H., Okamoto H. Response. Science. 1993 Oct 22;262(5133):585–585. doi: 10.1126/science.262.5133.585. [DOI] [PubMed] [Google Scholar]
  28. Tanaka Y., Tashjian A. H., Jr Functional identification and quantitation of three intracellular calcium pools in GH4C1 cells: evidence that the caffeine-responsive pool is coupled to a thapsigargin-resistant, ATP-dependent process. Biochemistry. 1993 Nov 16;32(45):12062–12073. doi: 10.1021/bi00096a017. [DOI] [PubMed] [Google Scholar]
  29. Tanaka Y., Tashjian A. H., Jr Thimerosal potentiates Ca2+ release mediated by both the inositol 1,4,5-trisphosphate and the ryanodine receptors in sea urchin eggs. Implications for mechanistic studies on Ca2+ signaling. J Biol Chem. 1994 Apr 15;269(15):11247–11253. [PubMed] [Google Scholar]
  30. Thorn P., Gerasimenko O., Petersen O. H. Cyclic ADP-ribose regulation of ryanodine receptors involved in agonist evoked cytosolic Ca2+ oscillations in pancreatic acinar cells. EMBO J. 1994 May 1;13(9):2038–2043. doi: 10.1002/j.1460-2075.1994.tb06478.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tokumitsu H., Chijiwa T., Hagiwara M., Mizutani A., Terasawa M., Hidaka H. KN-62, 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazi ne, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1990 Mar 15;265(8):4315–4320. [PubMed] [Google Scholar]
  32. Walseth T. F., Aarhus R., Kerr J. A., Lee H. C. Identification of cyclic ADP-ribose-binding proteins by photoaffinity labeling. J Biol Chem. 1993 Dec 15;268(35):26686–26691. [PubMed] [Google Scholar]
  33. Wang J., Best P. M. Inactivation of the sarcoplasmic reticulum calcium channel by protein kinase. Nature. 1992 Oct 22;359(6397):739–741. doi: 10.1038/359739a0. [DOI] [PubMed] [Google Scholar]
  34. Witcher D. R., Strifler B. A., Jones L. R. Cardiac-specific phosphorylation site for multifunctional Ca2+/calmodulin-dependent protein kinase is conserved in the brain ryanodine receptor. J Biol Chem. 1992 Mar 5;267(7):4963–4967. [PubMed] [Google Scholar]
  35. Zorzato F., Fujii J., Otsu K., Phillips M., Green N. M., Lai F. A., Meissner G., MacLennan D. H. Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1990 Feb 5;265(4):2244–2256. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES