Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1977 Apr;16(1):81–87. doi: 10.1128/iai.16.1.81-87.1977

Identification, separation, and preliminary characterization of invertase and beta-galactosidase in Actinomyces viscosus.

R A Kiel, J M Tanzer, F N Woodiel
PMCID: PMC421491  PMID: 17574

Abstract

The initial step of disaccharide dissimilation by Actinomyces viscosus serotype 2 strain M-100 was studied. Sucrase activity was found in the 3,000 X g particulate fraction and the 37,000 X g soluble fraction of the cells, whereas lactase activity was found almost exclusively in the 37,000 X g soluble fraction. Neither sucrase nor lactase activity was appreciable in the culture liquor. Sucrose phosphorylase, alpha-glucosidase, and polysaccharide synthesis activities were not observed in the soluble cell fraction. The sucrase was identified as invertase (EC 3.2.1.26; beta-D-fructofuranoside fructohydrolase). The lactase was identified as beta-galactosidase (EC 3.2.1.23; beta-D-galactoside galactohydrolase). The enzymes in the 37,000 X g soluble fraction were separable by diethylamino-ethyl-cellulose chromatography, giving one beta-galactosidase peak and one major and one minor invertase peak. Acrylamide gel electrophoresis showed different electrophoretic mobilities of the enzymes. The molecular weight of the beta-galactosidase is about 4.2 X 10(5) and that of invertase is about 8.6 X 10(4). The beta-galactosidase has a Km for lactose of about 6 mM and a pH optimum between pH 6.0 and 6.5. The major invertase component has a Km for sucrose of about 71 mM and a pH optimum between pH 5.8 and 6.3.

Full text

PDF
81

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DAHLQVIST A. Determination of maltase and isomaltase activities with a glucose-oxidase reagent. Biochem J. 1961 Sep;80:547–551. doi: 10.1042/bj0800547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gerencser M. A., Slack J. M. Identification of human strains of Actinomyces viscosus. Appl Microbiol. 1969 Jul;18(1):80–87. doi: 10.1128/am.18.1.80-87.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hageage G. J., Johanssen I., Tanzer J. M. In vitro plaque formation by several oral diphtheroids implicated in periodontal disease. Infect Immun. 1970 Nov;2(5):683–685. doi: 10.1128/iai.2.5.683-685.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Howell A., Jr A filamentous microorganism isolated from periodontal plaque in hamsters. 1. Isolation, morphology and general cultural characteristics. Sabouraudia. 1963 Oct;3(1):81–92. doi: 10.1080/00362176485190131. [DOI] [PubMed] [Google Scholar]
  5. Howell A., Jr, Jordan H. V. Production of an extracellular levan by Odontomyces viscosus. Arch Oral Biol. 1967 Apr;12(4):571–573. doi: 10.1016/0003-9969(67)90033-7. [DOI] [PubMed] [Google Scholar]
  6. JORDAN H. V., FITZGERALD R. J., BOWLER A. E. Inhibition of experimental caries by sodium metabisulfite and its effect on the growth and metabolism of selected bacteria. J Dent Res. 1960 Jan-Feb;39:116–123. doi: 10.1177/00220345600390010501. [DOI] [PubMed] [Google Scholar]
  7. JORDAN H. V., KEYES P. H. AEROBIC, GRAM-POSITIVE, FILAMENTOUS BACTERIA AS ETIOLOGIC AGENTS OF EXPERIMENTAL PERIODONTAL DISEASE IN HAMSTERS. Arch Oral Biol. 1964 Jul-Aug;9:401–414. doi: 10.1016/0003-9969(64)90025-1. [DOI] [PubMed] [Google Scholar]
  8. Jordan H. V., Hammond B. F. Filamentous bacteria isolated from human root surface caries. Arch Oral Biol. 1972 Sep;17(9):1333–1342. doi: 10.1016/0003-9969(72)90166-5. [DOI] [PubMed] [Google Scholar]
  9. Jordan H. V., Keyes P. H., Bellack S. Periodontal lesions in hamsters and gnotobiotic rats infected with actinomyces of human origin. J Periodontal Res. 1972;7(1):21–28. doi: 10.1111/j.1600-0765.1972.tb00627.x. [DOI] [PubMed] [Google Scholar]
  10. Krichevsky M. I., Howell A., Jr, Lim S. Levan formation by Odontomyces viscosus. J Dent Res. 1969 Sep-Oct;48(5):938–942. doi: 10.1177/00220345690480055701. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Miller C. H. Degradation of sucrose by whole cells and plaque of Actinomyces naeslundii. Infect Immun. 1974 Dec;10(6):1280–1291. doi: 10.1128/iai.10.6.1280-1291.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Miller C. H., Warner T. N., Palenik C. J., Somers P. J. Levan formation by whole cells of Actinomyces viscosus ATCC 15987. J Dent Res. 1975 Jul-Aug;54(4):906–906. doi: 10.1177/00220345750540043701. [DOI] [PubMed] [Google Scholar]
  14. Palenik C. J., Miller C. H. Extracellular invertase activity from Actinomyces viscosus. J Dent Res. 1975 Jan-Feb;54(1):186–186. doi: 10.1177/00220345750540011901. [DOI] [PubMed] [Google Scholar]
  15. Stephens R., DeBusk A. G. Beta-galactosidases from Neurospora crassa. Methods Enzymol. 1975;42:497–503. doi: 10.1016/0076-6879(75)42158-9. [DOI] [PubMed] [Google Scholar]
  16. Tanzer J. M., Brown A. T., McInerney M. F. Identification, preliminary characterization, and evidence for regulation of invertase in Streptococcus mutans. J Bacteriol. 1973 Oct;116(1):192–202. doi: 10.1128/jb.116.1.192-202.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. van der Hoeven J. S., Vogels G. D., Bekkers M. F. A levansucrase from Actinomyces viscosus. Caries Res. 1976;10(1):33–48. doi: 10.1159/000260187. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES