Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Apr 11;92(8):3308–3312. doi: 10.1073/pnas.92.8.3308

Interfacial activation-based molecular bioimprinting of lipolytic enzymes.

I Mingarro 1, C Abad 1, L Braco 1
PMCID: PMC42155  PMID: 7724558

Abstract

Interfacial activation-based molecular (bio)-imprinting (IAMI) has been developed to rationally improve the performance of lipolytic enzymes in nonaqueous environments. The strategy combinedly exploits (i) the known dramatic enhancement of the protein conformational rigidity in a water-restricted milieu and (ii) the reported conformational changes associated with the activation of these enzymes at lipid-water interfaces, which basically involves an increased substrate accessibility to the active site and/or an induction of a more competent catalytic machinery. Six model enzymes have been assayed in several model reactions in nonaqueous media. The results, rationalized in light of the present biochemical and structural knowledge, show that the IAMI approach represents a straightforward, versatile method to generate manageable, activated (kinetically trapped) forms of lipolytic enzymes, providing under optimal conditions nonaqueous rate enhancements of up to two orders of magnitude. It is also shown that imprintability of lipolytic enzymes depends not only on the nature of the enzyme but also on the "quality" of the interface used as the template.

Full text

PDF
3308

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold F. H. Protein engineering for unusual environments. Curr Opin Biotechnol. 1993 Aug;4(4):450–455. doi: 10.1016/0958-1669(93)90011-k. [DOI] [PubMed] [Google Scholar]
  2. Bañ M. C., Braco L., Abad C. Conformational transitions of gramicidin A in phospholipid model membranes. A high-performance liquid chromatography assessment. Biochemistry. 1991 Jan 29;30(4):886–894. doi: 10.1021/bi00218a002. [DOI] [PubMed] [Google Scholar]
  3. Braco L., Dabulis K., Klibanov A. M. Production of abiotic receptors by molecular imprinting of proteins. Proc Natl Acad Sci U S A. 1990 Jan;87(1):274–277. doi: 10.1073/pnas.87.1.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brzozowski A. M., Derewenda U., Derewenda Z. S., Dodson G. G., Lawson D. M., Turkenburg J. P., Bjorkling F., Huge-Jensen B., Patkar S. A., Thim L. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature. 1991 Jun 6;351(6326):491–494. doi: 10.1038/351491a0. [DOI] [PubMed] [Google Scholar]
  5. Carrière F., Thirstrup K., Boel E., Verger R., Thim L. Structure-function relationships in naturally occurring mutants of pancreatic lipase. Protein Eng. 1994 Apr;7(4):563–569. doi: 10.1093/protein/7.4.563. [DOI] [PubMed] [Google Scholar]
  6. DESNUELLE P., SARDA L., AILHAUD G. [Inhibition of pancreatic lipase by diethyl-p-nitrophenyl phosphate in emulation]. Biochim Biophys Acta. 1960 Jan 29;37:570–571. doi: 10.1016/0006-3002(60)90532-1. [DOI] [PubMed] [Google Scholar]
  7. Derewenda U., Brzozowski A. M., Lawson D. M., Derewenda Z. S. Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochemistry. 1992 Feb 11;31(5):1532–1541. doi: 10.1021/bi00120a034. [DOI] [PubMed] [Google Scholar]
  8. Derewenda Z. S., Sharp A. M. News from the interface: the molecular structures of triacylglyceride lipases. Trends Biochem Sci. 1993 Jan;18(1):20–25. doi: 10.1016/0968-0004(93)90082-x. [DOI] [PubMed] [Google Scholar]
  9. Dordick J. S. Non-aqueous enzymology. Curr Opin Biotechnol. 1991 Jun;2(3):401–407. doi: 10.1016/s0958-1669(05)80146-6. [DOI] [PubMed] [Google Scholar]
  10. Grochulski P., Li Y., Schrag J. D., Bouthillier F., Smith P., Harrison D., Rubin B., Cygler M. Insights into interfacial activation from an open structure of Candida rugosa lipase. J Biol Chem. 1993 Jun 15;268(17):12843–12847. [PubMed] [Google Scholar]
  11. Grochulski P., Li Y., Schrag J. D., Cygler M. Two conformational states of Candida rugosa lipase. Protein Sci. 1994 Jan;3(1):82–91. doi: 10.1002/pro.5560030111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kennedy D. F., Slotboom A. J., de Haas G. H., Chapman D. A Fourier transform infrared spectroscopic (FTIR) study of porcine and bovine pancreatic phospholipase A2 and their interaction with substrate analogues and a transition-state inhibitor. Biochim Biophys Acta. 1990 Sep 27;1040(3):317–326. doi: 10.1016/0167-4838(90)90129-4. [DOI] [PubMed] [Google Scholar]
  13. Klibanov A. M. Enzymatic catalysis in anhydrous organic solvents. Trends Biochem Sci. 1989 Apr;14(4):141–144. doi: 10.1016/0968-0004(89)90146-1. [DOI] [PubMed] [Google Scholar]
  14. Martinez C., Nicolas A., van Tilbeurgh H., Egloff M. P., Cudrey C., Verger R., Cambillau C. Cutinase, a lipolytic enzyme with a preformed oxyanion hole. Biochemistry. 1994 Jan 11;33(1):83–89. doi: 10.1021/bi00167a011. [DOI] [PubMed] [Google Scholar]
  15. Mingarro I., Abad C., Braco L. Characterization of acylating and deacylating activities of an extracellular phospholipase A2 in a water-restricted environment. Biochemistry. 1994 Apr 19;33(15):4652–4660. doi: 10.1021/bi00181a600. [DOI] [PubMed] [Google Scholar]
  16. Mosbach K. Molecular imprinting. Trends Biochem Sci. 1994 Jan;19(1):9–14. doi: 10.1016/0968-0004(94)90166-x. [DOI] [PubMed] [Google Scholar]
  17. Peters A. R., Dekker N., van den Berg L., Boelens R., Kaptein R., Slotboom A. J., de Haas G. H. Conformational changes in phospholipase A2 upon binding to micellar interfaces in the absence and presence of competitive inhibitors. A 1H and 15N NMR study. Biochemistry. 1992 Oct 20;31(41):10024–10030. doi: 10.1021/bi00156a023. [DOI] [PubMed] [Google Scholar]
  18. Russell A. J., Klibanov A. M. Inhibitor-induced enzyme activation in organic solvents. J Biol Chem. 1988 Aug 25;263(24):11624–11626. [PubMed] [Google Scholar]
  19. SARDA L., DESNUELLE P. Action de la lipase pancréatique sur les esters en émulsion. Biochim Biophys Acta. 1958 Dec;30(3):513–521. doi: 10.1016/0006-3002(58)90097-0. [DOI] [PubMed] [Google Scholar]
  20. Schrag J. D., Cygler M. 1.8 A refined structure of the lipase from Geotrichum candidum. J Mol Biol. 1993 Mar 20;230(2):575–591. doi: 10.1006/jmbi.1993.1171. [DOI] [PubMed] [Google Scholar]
  21. Twist E. C., Mitchell S., Brazell C., Stahl S. M., Campbell I. C. 5HT2 receptor changes in rat cortex and platelets following chronic ritanserin and clorgyline administration. Biochem Pharmacol. 1990 Jan 1;39(1):161–166. doi: 10.1016/0006-2952(90)90660-d. [DOI] [PubMed] [Google Scholar]
  22. Wescott C. R., Klibanov A. M. The solvent dependence of enzyme specificity. Biochim Biophys Acta. 1994 May 18;1206(1):1–9. doi: 10.1016/0167-4838(94)90065-5. [DOI] [PubMed] [Google Scholar]
  23. Zaks A., Klibanov A. M. Enzymatic catalysis in organic media at 100 degrees C. Science. 1984 Jun 15;224(4654):1249–1251. doi: 10.1126/science.6729453. [DOI] [PubMed] [Google Scholar]
  24. van Tilbeurgh H., Egloff M. P., Martinez C., Rugani N., Verger R., Cambillau C. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature. 1993 Apr 29;362(6423):814–820. doi: 10.1038/362814a0. [DOI] [PubMed] [Google Scholar]
  25. van Tilbeurgh H., Sarda L., Verger R., Cambillau C. Structure of the pancreatic lipase-procolipase complex. Nature. 1992 Sep 10;359(6391):159–162. doi: 10.1038/359159a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES