Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Apr 11;92(8):3386–3390. doi: 10.1073/pnas.92.8.3386

Development of a K(+)-channel probe and its use for identification of an intracellular plant membrane K+ channel.

F Mi 1, G A Berkowitz 1
PMCID: PMC42171  PMID: 7724571

Abstract

Polyclonal antibodies were generated against a 9-amino acid, synthetic peptide corresponding to the selectivity filter in the pore region of K(+)-channel proteins. The sequence of amino acids in the ion-conducting pore region of K+ channels is the only highly conserved region of members of this protein family. The objectives of the present work were (i) to determine whether the anti-channel pore peptide antibody was immunoreactive with known K(+)-channel proteins and (ii) to demonstrate the usefulness of the antibody by employing it to identify a newly discovered K(+)-channel protein. Anti-channel pore peptide was immunoreactive with various K(+)-channel subtypes native to a number of different species. Immunoblot analysis demonstrated affinity of the antibody for the drk1, maxi-K, and KAT1 K(+)-channel proteins. Studies also suggested that the anti-channel pore peptide antibody did not immunoreact with membrane proteins other than K+ channels. The anti-channel pore peptide antibody was used to establish the identity of a 62-kDa chloroplast inner envelope polypeptide as a putative component of a K(+)-channel protein. It was concluded that an antibody generated against the conserved pore region/selectivity filter of K+ channels has broad but selective affinity for this class of proteins. This K(+)-channel probe may be a useful tool for identification of K(+)-channel proteins in native membranes.

Full text

PDF
3386

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. A., Huprikar S. S., Kochian L. V., Lucas W. J., Gaber R. F. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3736–3740. doi: 10.1073/pnas.89.9.3736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barbas J. A., Rubio N., Pedroso E., Pongs O., Ferrús A. Antibodies against Drosophila potassium channels identify membrane proteins across species. Brain Res Mol Brain Res. 1989 Mar;5(2):171–176. doi: 10.1016/0169-328x(89)90008-9. [DOI] [PubMed] [Google Scholar]
  3. Brown A. M. Functional bases for interpreting amino acid sequences of voltage-dependent K+ channels. Annu Rev Biophys Biomol Struct. 1993;22:173–198. doi: 10.1146/annurev.bb.22.060193.001133. [DOI] [PubMed] [Google Scholar]
  4. Critz S. D., Wible B. A., Lopez H. S., Brown A. M. Stable expression and regulation of a rat brain K+ channel. J Neurochem. 1993 Mar;60(3):1175–1178. doi: 10.1111/j.1471-4159.1993.tb03273.x. [DOI] [PubMed] [Google Scholar]
  5. Garcia-Calvo M., Knaus H. G., McManus O. B., Giangiacomo K. M., Kaczorowski G. J., Garcia M. L. Purification and reconstitution of the high-conductance, calcium-activated potassium channel from tracheal smooth muscle. J Biol Chem. 1994 Jan 7;269(1):676–682. [PubMed] [Google Scholar]
  6. Gentry L. E., Rohrschneider L. R., Casnellie J. E., Krebs E. G. Antibodies to a defined region of pp60src neutralize the tyrosine-specific kinase activity. J Biol Chem. 1983 Sep 25;258(18):11219–11228. [PubMed] [Google Scholar]
  7. Gordon D., Merrick D., Wollner D. A., Catterall W. A. Biochemical properties of sodium channels in a wide range of excitable tissues studied with site-directed antibodies. Biochemistry. 1988 Sep 6;27(18):7032–7038. doi: 10.1021/bi00418a054. [DOI] [PubMed] [Google Scholar]
  8. Houghten R. A. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5131–5135. doi: 10.1073/pnas.82.15.5131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jan L. Y., Jan Y. N. Structural elements involved in specific K+ channel functions. Annu Rev Physiol. 1992;54:537–555. doi: 10.1146/annurev.ph.54.030192.002541. [DOI] [PubMed] [Google Scholar]
  10. Ko C. H., Gaber R. F. TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Aug;11(8):4266–4273. doi: 10.1128/mcb.11.8.4266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mi F., Peters J. S., Berkowitz G. A. Characterization of a chloroplast inner envelope K+ channel. Plant Physiol. 1994 Jul;105(3):955–964. doi: 10.1104/pp.105.3.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Milkman R. An Escherichia coli homologue of eukaryotic potassium channel proteins. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3510–3514. doi: 10.1073/pnas.91.9.3510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Miller C. Potassium selectivity in proteins: oxygen cage or pi in the face? Science. 1993 Sep 24;261(5129):1692–1693. doi: 10.1126/science.8397443. [DOI] [PubMed] [Google Scholar]
  14. Scott V. E., Parcej D. N., Keen J. N., Findlay J. B., Dolly J. O. Alpha-dendrotoxin acceptor from bovine brain is a K+ channel protein. Evidence from the N-terminal sequence of its larger subunit. J Biol Chem. 1990 Nov 25;265(33):20094–20097. [PubMed] [Google Scholar]
  15. Sentenac H., Bonneaud N., Minet M., Lacroute F., Salmon J. M., Gaymard F., Grignon C. Cloning and expression in yeast of a plant potassium ion transport system. Science. 1992 May 1;256(5057):663–665. doi: 10.1126/science.1585180. [DOI] [PubMed] [Google Scholar]
  16. Shi G., Kleinklaus A. K., Marrion N. V., Trimmer J. S. Properties of Kv2.1 K+ channels expressed in transfected mammalian cells. J Biol Chem. 1994 Sep 16;269(37):23204–23211. [PubMed] [Google Scholar]
  17. Slaughter R. S., Shevell J. L., Felix J. P., Garcia M. L., Kaczorowski G. J. High levels of sodium-calcium exchange in vascular smooth muscle sarcolemmal membrane vesicles. Biochemistry. 1989 May 2;28(9):3995–4002. doi: 10.1021/bi00435a055. [DOI] [PubMed] [Google Scholar]
  18. Trimmer J. S. Immunological identification and characterization of a delayed rectifier K+ channel polypeptide in rat brain. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10764–10768. doi: 10.1073/pnas.88.23.10764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tsao J. L., Lin X., Lackland H., Tous G., Wu Y. L., Stein S. Internally standardized amino acid analysis for determining peptide/carrier protein coupling ratio. Anal Biochem. 1991 Aug 15;197(1):137–142. doi: 10.1016/0003-2697(91)90369-5. [DOI] [PubMed] [Google Scholar]
  20. Wang X., Berkowitz G. A., Peters J. S. K+-conducting ion channel of the chloroplast inner envelope: functional reconstitution into liposomes. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4981–4985. doi: 10.1073/pnas.90.11.4981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wu W., Berkowitz G. A. Stromal pH and Photosynthesis Are Affected by Electroneutral K and H Exchange through Chloroplast Envelope Ion Channels. Plant Physiol. 1992 Feb;98(2):666–672. doi: 10.1104/pp.98.2.666. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES