Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1978 Aug;21(2):398–404. doi: 10.1128/iai.21.2.398-404.1978

Role for Activated Macrophages in Resistance Against Trichinella spiralis

Edward J Wing 1,, Jack S Remington 2
PMCID: PMC422009  PMID: 99366

Abstract

To determine whether activated macrophages are important in resistance against the intestinal phase of nematode parasites, we studied Trichinella spiralis infections in mice with normal macrophages and in mice with macrophages activated by either chronic Toxoplasma gondii or acute Listeria monocytogenes infections. The peak T. spiralis adult worm burden in the intestines of normal C57BL/6 or Swiss Webster mice occurred from 6 to 14 days after infection. Subsequent expulsion of worms from the intestines occurred from 8 to 20 days after infection. C57BL/6 mice chronically infected with T. gondii and then challenged with T. spiralis larvae had significantly lower peak intestinal worm burdens (P < 0.05) than normal C57BL/6 mice similarly challenged. Swiss Webster mice infected 7 or 13 days earlier with L. monocytogenes and then challenged with T. spiralis larvae had significantly lower peak worm burdens (P < 0.01) than uninfected mice. The time of expulsion of adult worms was not affected by either infection. Swiss Webster mice infected 42 days earlier with L. monocytogenes (i.e., possessing lymphocytes sensitized to L. monocytogenes but not possessing activated macrophages) did not have a lower worm burden than uninfected mice. Serum factors (e.g., antibody) did not appear to play a role because normal mice injected with serum from L. monocytogenes-infected mice had worm burdens similar to those of mice injected with normal serum. The histopathology of intestines of mice infected with T. gondii or L. monocytogenes was the same as that of normal mice. When T. spiralis larvae were incubated with normal macrophages or macrophages from T. spiralis-infected mice in vitro for 24 h, the number of larvae with adherent T. spiralis macrophages was significantly (P < 0.005) greater than the number of larvae with adherent normal macrophages. These studies suggest a role for activated macrophages in resistance to T. spiralis.

Full text

PDF
398

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Conley F. K., Remington J. S. Nonspecific inhibition of tumor growth in the central nervous system: observations of intracerebral ependymoblastoma in mice with chronic Toxoplasma infection. J Natl Cancer Inst. 1977 Sep;59(3):963–973. doi: 10.1093/jnci/59.3.963. [DOI] [PubMed] [Google Scholar]
  2. Cypess R. H., Lubiniecki A. S., Swidwa D. M. Decreased susceptibility to Listeria monocytogenes in mice after infection with Trichinella spiralis. Infect Immun. 1974 Feb;9(2):477–479. doi: 10.1128/iai.9.2.477-479.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gardner I. D., Remington J. S. Age-related decline in the resistance of mice to infection with intracellular pathogens. Infect Immun. 1977 May;16(2):593–598. doi: 10.1128/iai.16.2.593-598.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gentry L. O., Remington J. S. Resistance against Cryptococcus conferred by intracellular bacteria and protozoa. J Infect Dis. 1971 Jan;123(1):22–31. doi: 10.1093/infdis/123.1.22. [DOI] [PubMed] [Google Scholar]
  5. Grove D. I., Mahmoud A. A., Warren K. S. Eosinophils and resistance to Trichinella spiralis. J Exp Med. 1977 Mar 1;145(3):755–759. doi: 10.1084/jem.145.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Julianelle L. A. Biological and Immunological Studies of Listerella. J Bacteriol. 1941 Sep;42(3):367–383. doi: 10.1128/jb.42.3.367-383.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Krahenbuhl J. L., Remington J. S. The role of activated macrophages in specific and nonspecific cytostasis of tumor cells. J Immunol. 1974 Aug;113(2):507–516. [PubMed] [Google Scholar]
  8. Krick J. A., Remington J. S. Resistance to infection with Nocardia asteroides. J Infect Dis. 1975 Jun;131(6):665–672. doi: 10.1093/infdis/131.6.665. [DOI] [PubMed] [Google Scholar]
  9. LARSH J. E., Jr, GOULSON H. T., WEATHERLY N. F. STUDIES ON DELAYED (CELLULAR) HYPERSENSITIVITY IN MICE INFECTED WITH TRICHINELLA SPIRALIS. II. TRANSFER OF PERITONEAL EXUDATE CELLS. J Parasitol. 1964 Aug;50:496–498. [PubMed] [Google Scholar]
  10. Larsh J. E., Jr Allergic inflammation as a hypothesis for the expulsion of worms from tissues: a review. Exp Parasitol. 1975 Apr;37(2):251–266. doi: 10.1016/0014-4894(75)90077-6. [DOI] [PubMed] [Google Scholar]
  11. Larsh J. E., Jr, Race G. J., Goulson H. T., Weatherly N. F. Studies on delayed (cellular) hypersensitivity in mice infected with Trichinella spiralis. 3. Serologic and histopathologic findings in recipients given peritoneal exudate cells. J Parasitol. 1966 Feb;52(1):146–156. [PubMed] [Google Scholar]
  12. Love R. J., Ogilvie B. M., McLaren D. J. The immune mechanism which expels the intestinal stage of Trichinella spiralis from rats. Immunology. 1976 Jan;30(1):7–15. [PMC free article] [PubMed] [Google Scholar]
  13. MACKANESS G. B. Cellular resistance to infection. J Exp Med. 1962 Sep 1;116:381–406. doi: 10.1084/jem.116.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McLeod R., Remington J. S. Influence of infection with Toxoplasma on macrophage function, and role of macrophages in resistance to Toxoplasma. Am J Trop Med Hyg. 1977 Nov;26(6 Pt 2):170–186. doi: 10.4269/ajtmh.1977.26.170. [DOI] [PubMed] [Google Scholar]
  15. Meerovitch E., Bomford R. Macrophage potentiation by Trichinella spiralis. Ann Trop Med Parasitol. 1977 Jun;71(2):245–248. doi: 10.1080/00034983.1977.11687187. [DOI] [PubMed] [Google Scholar]
  16. North R. J., Deissler J. F. Nature of "memory" in T-cell mediated antibacterial immunity: cellular parameters that distinguish between the active immune response and a state of "memory". Infect Immun. 1975 Oct;12(4):761–767. doi: 10.1128/iai.12.4.761-767.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Remington J. S., Krahenbuhl J. L., Mendenhall J. W. A role for activated macrophages in resistance to infection with Toxoplasma. Infect Immun. 1972 Nov;6(5):829–834. doi: 10.1128/iai.6.5.829-834.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ruskin J., McIntosh J., Remington J. S. Studies on the mechanisms of resistance to phylogenetically diverse intracellular organisms. J Immunol. 1969 Aug;103(2):252–259. [PubMed] [Google Scholar]
  19. Sabin A. B., Feldman H. A. Dyes as Microchemical Indicators of a New Immunity Phenomenon Affecting a Protozoon Parasite (Toxoplasma). Science. 1948 Dec 10;108(2815):660–663. doi: 10.1126/science.108.2815.660. [DOI] [PubMed] [Google Scholar]
  20. Wakelin D., Lloyd M. Accelerated expulsion of adult Trichinella spiralis in mice given lymphoid cells and serum from infected donors. Parasitology. 1976 Jun;72(3):307–315. doi: 10.1017/s0031182000049507. [DOI] [PubMed] [Google Scholar]
  21. Wakelin D., Lloyd M. Immunity to primary and challenge infections of Trichinella spiralis in mice: a re-examination of conventional parameters. Parasitology. 1976 Apr;72(2):173–182. doi: 10.1017/s0031182000048472. [DOI] [PubMed] [Google Scholar]
  22. Wakelin D., Wilson M. M. Evidence for the involvement of a bone marrow-derived cell population in the immune expulsion of Trichinella spiralis. Parasitology. 1977 Jun;74(3):225–234. doi: 10.1017/s0031182000047855. [DOI] [PubMed] [Google Scholar]
  23. Wakelin D., Wilson M. M. Transfer of immunity to Trichinella spiralis in the mouse with mesenteric lymph node cells: time of appearance of effective cells in donors and expression of immunity in recipients. Parasitology. 1977 Jun;74(3):215–224. doi: 10.1017/s0031182000047843. [DOI] [PubMed] [Google Scholar]
  24. Weatherly N. F. Increased survival of Swiss mice given sublethal infections of Trichinella spiralis. J Parasitol. 1970 Aug;56(4):748–752. [PubMed] [Google Scholar]
  25. Williams D. M., Sawyer S., Remington J. S. Role of activated macrophages in resistance of mice to infection with Trypanosoma cruzi. J Infect Dis. 1976 Dec;134(6):610–623. doi: 10.1093/infdis/134.6.610. [DOI] [PubMed] [Google Scholar]
  26. Wing E. J., Gardner I. D., Ryning F. W., Remington J. S. Dissociation of effector functions in populations of activated macrophages. Nature. 1977 Aug 18;268(5621):642–644. doi: 10.1038/268642a0. [DOI] [PubMed] [Google Scholar]
  27. Wing E. J., Remington J. S. Studies on the regulation of lymphocyte reactivity by normal and activated macrophages. Cell Immunol. 1977 Apr;30(1):108–121. doi: 10.1016/0008-8749(77)90052-1. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES