Abstract
Epinephrine, norepinephrine, and dihydroxyphenylalanine at 8 mm concentrations prevented iodination of zymosan by intact neutrophils and decarboxylation of l-alanine by leukocyte sonic extracts. The same concentration of epinephrine also reduced bactericidal activity of the leukocyte against Staphylococcus aureus, Enterobacter cloacae, and Proteus rettgeri without decreasing phagocytosis of bacteria. Spectral studies indicated that epinephrine interferes with the myeloperoxidase-mediated reactions by competing for available H2O2 via its enzymatic oxidation to adrenochrome. These findings support a mechanism in which H2O2 plays an important role in the bactericidal activity of the leukocyte.
Full text
PDF![211](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a682/422518/34e7297fcf76/iai00273-0001.png)
![212](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a682/422518/22291cac71c5/iai00273-0002.png)
![213](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a682/422518/d1c49d208d6c/iai00273-0003.png)
![214](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a682/422518/9098251b6a20/iai00273-0004.png)
![215](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a682/422518/eec07b6dadb6/iai00273-0005.png)
![216](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a682/422518/e619cb753a96/iai00273-0006.png)
![217](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a682/422518/800ce37aa4d0/iai00273-0007.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cooper M. R., DeChatelet L. R., McCall C. E., LaVia M. F., Spurr C. L., Baehner R. L. Leucocyte G.-6-P.D. deficiency. Lancet. 1970 Jul 11;1(7663):110–110. doi: 10.1016/s0140-6736(70)92693-0. [DOI] [PubMed] [Google Scholar]
- DeChatelet L. R., Cooper M. R. A modified procedure for the determination of leukocyte alkaline phosphatase. Biochem Med. 1970 Aug;4(1):61–68. doi: 10.1016/0006-2944(70)90103-1. [DOI] [PubMed] [Google Scholar]
- DeChatelet L. R., Cooper M. R., McCall C. E. Stimulation of the hexose monophosphate shunt in human neutrophils by ascorbic acid: mechanism of action. Antimicrob Agents Chemother. 1972 Jan;1(1):12–16. doi: 10.1128/aac.1.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dechatelet L. R., Cooper M. R., McCall C. E. Dissociation by colchicine of the hexose monophosphate shunt activation from the bactericidal activity of the leukocyte. Infect Immun. 1971 Jan;3(1):66–72. doi: 10.1128/iai.3.1.66-72.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green D. E., Richter D. Adrenaline and adrenochrome. Biochem J. 1937 Apr;31(4):596–616. doi: 10.1042/bj0310596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HIRSCH J. G. Cinemicrophotographic observations on granule lysis in polymorphonuclear leucocytes during phagocytosis. J Exp Med. 1962 Dec 1;116:827–834. doi: 10.1084/jem.116.6.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes B., Page A. R., Good R. A. Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest. 1967 Sep;46(9):1422–1432. doi: 10.1172/JCI105634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karnovsky M. L. The metabolism of leukocytes. Semin Hematol. 1968 Apr;5(2):156–165. [PubMed] [Google Scholar]
- Klebanoff S. J. Iodination of bacteria: a bactericidal mechanism. J Exp Med. 1967 Dec 1;126(6):1063–1078. doi: 10.1084/jem.126.6.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehrer R. I., Cline M. J. Interaction of Candida albicans with human leukocytes and serum. J Bacteriol. 1969 Jun;98(3):996–1004. doi: 10.1128/jb.98.3.996-1004.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCall C. E., DeChatelet L. R., Cooper M. R., Ashburn P. The effects of ascorbic acid on bactericidal mechanisms of neutrophils. J Infect Dis. 1971 Aug;124(2):194–198. doi: 10.1093/infdis/124.2.194. [DOI] [PubMed] [Google Scholar]
- Miller T. E. Killing and lysis of gram-negative bacteria through the synergistic effect of hydrogen peroxide, ascorbic acid, and lysozyme. J Bacteriol. 1969 Jun;98(3):949–955. doi: 10.1128/jb.98.3.949-955.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paul B. B., Jacobs A. A., Strauss R. R., Sbarra A. J. Role of the Phagocyte in Host-Parasite Interactions XXIV. Aldehyde Generation by the Myeloperoxidase-H(2)O(2)-Chloride Antimicrobial System: a Possible In Vivo Mechanism of Action. Infect Immun. 1970 Oct;2(4):414–418. doi: 10.1128/iai.2.4.414-418.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pincus S. H., Klebanoff S. J. Quantitative leukocyte iodination. N Engl J Med. 1971 Apr 8;284(14):744–750. doi: 10.1056/NEJM197104082841402. [DOI] [PubMed] [Google Scholar]
- Qualliotine D., DeChatelet L. R., McCall C. E., Cooper M. R. Stimulation of oxidative metabolism in polymorphonuclear leukocytes by catecholamines. J Reticuloendothel Soc. 1972 Mar;11(3):263–276. [PubMed] [Google Scholar]
- REPASKE R. Lysis of gram-negative bacteria by lysozyme. Biochim Biophys Acta. 1956 Oct;22(1):189–191. doi: 10.1016/0006-3002(56)90240-2. [DOI] [PubMed] [Google Scholar]
- SBARRA A. J., KARNOVSKY M. L. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem. 1959 Jun;234(6):1355–1362. [PubMed] [Google Scholar]
- Strauss R. R., Paul B. B., Jacobs A. A., Sbarra A. J. Role of the phagocyte in host-parasite interactions. XXII. H2O2-dependent decarbosylation and deamination by myeloperoxidase and its relationship to antimicrobial activity. J Reticuloendothel Soc. 1970 Jun;7(6):754–761. [PubMed] [Google Scholar]
- WALAAS E., WALAAS O. Oxidation of reduced phosphopyridine nucleotides by p-phenylenediamines, catecholamines and serotonin in the presence of ceruloplasmin. Arch Biochem Biophys. 1961 Oct;95:151–162. doi: 10.1016/0003-9861(61)90121-7. [DOI] [PubMed] [Google Scholar]
- ZEYA H. I., SPITZNAGEL J. K. ANTIBACTERIAL AND ENZYMIC BASIC PROTEINS FROM LEUKOCYTE LYSOSOMES: SEPARATION AND IDENTIFICATION. Science. 1963 Nov 22;142(3595):1085–1087. doi: 10.1126/science.142.3595.1085. [DOI] [PubMed] [Google Scholar]