Skip to main content
Science Progress logoLink to Science Progress
. 2010 Jun 2;93(2):151–169. doi: 10.3184/003685010X12705764469952

Development and Regeneration of Projection Neuron Subtypes of the Cerebral Cortex

Giulio Srubek Tomassy 1,, Simona Lodato 2,, Zachary Trayes-Gibson 3, Paola Arlotta 4,
PMCID: PMC4226406  NIHMSID: NIHMS639382  PMID: 20681320

Abstract

The idea of repairing damaged neuronal circuitry in the mammalian central nervous system (CNS) has challenged neuroscientists for centuries. This is mainly due to the notorious inability of neurons to regenerate and the unparalleled cellular diversity of the nervous system. In the mammalian cerebral cortex, one of the most complex areas of the CNS, multipotent neural stem and progenitor cells undergo progressive specification during development to generate the staggering variety of projection neuron subtypes that are found in the adult. How is this process orchestrated in the embryo? And, can developmental signals be used to regenerate projection neuron subtypes in the adult or in the dish? Here, we first provide an overview of the diversity and fate potential of neural progenitors of the cerebral cortex during development. Further, we discuss the plasticity of neural progenitors and the roles of intrinsic and extrinsic signals over progenitor fate. Finally, we discuss the relevance of developmental signals for efforts to direct the differentiation of pluripotent stem cells into specific types of cortical projection neurons for therapeutic benefit.

Keywords: cerebral cortex, neural progenitors, development, differentiation, neuronal identity

Full Text

The Full Text of this article is available as a PDF (875.5 KB).

References

  • 1.Tanabe Y., and Jessell T.M. (1996) Diversity and pattern in the developing spinal cord. Science, 274(5290), 1115–1123. [DOI] [PubMed] [Google Scholar]
  • 2.Dasen J.S., and Jessell T.M. (2009) Hox networks and the origins of motor neuron diversity. Curr. Top. Dev. Biol., 88, 169–200. [DOI] [PubMed] [Google Scholar]
  • 3.Dalla Torre di Sanguinetto S.A., Dasen J.S., and Arber S. (2008) Transcriptional mechanisms controlling motor neuron diversity and connectivity. Curr. Opin. Neurobiol., 18(1), 36–43. [DOI] [PubMed] [Google Scholar]
  • 4.Pearson B.J., and Doe C.Q. (2004) Specification of temporal identity in the developing nervous system. Annu. Rev. Cell Dev. Biol., 20, 619–647. [DOI] [PubMed] [Google Scholar]
  • 5.Masland R.H. (2001) The fundamental plan of the retina. Nat Neurosci., 4(9), 877–886. [DOI] [PubMed] [Google Scholar]
  • 6.Andreazzoli M. (2009) Molecular regulation of vertebrate retina cell fate. Birth Defects Res. C. Embryo Today, 87(3), 284–295. [DOI] [PubMed] [Google Scholar]
  • 7.Ramón y Cayal S. (1995) Histology of the nervous system of man and vertebrates. Oxford University Press, New York. [Google Scholar]
  • 8.Bayer S.A., and Altman J. (1991) Neocortical development. Raven, New York. [Google Scholar]
  • 9.Anderson S.A., Kaznowski C.E., Horn C., Rubenstein J.L., and McConnell S.K. (2002) Distinct origins of neocortical projection neurons and interneurons in vivo. Cer. Cor., 12, 702–709. [DOI] [PubMed] [Google Scholar]
  • 10.Marin O., and Rubenstein J.L. (2003) Cell migration in the forebrain. Annu. Rev. Neurosci., 26, 441–483. [DOI] [PubMed] [Google Scholar]
  • 11.Molyneaux B.J., Arlotta P., Menezes J.R.L., and Macklis J.D. (2007) Neuronal subtype specification in the cerebral cortex. Nat. Neurosci., 8(6), 427–437. [DOI] [PubMed] [Google Scholar]
  • 12.Wonders C.P., and Anderson S.A. (2006) The origin and specification of cortical interneurons. Nat. Rev. Neurosci., 7(9), 687–696. [DOI] [PubMed] [Google Scholar]
  • 13.Batista-Brito R., and Fishell G. (2009) The developmental integration of cortical interneurons into a functional network. In: Current topics in developmental biology, Vol. 87, Academic Press, New York. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Flames N., and Marin O. (2005) Developmental mechanisms underlying the generation of cortical interneuron diversity. Neuron, 46(3), 377–381. [DOI] [PubMed] [Google Scholar]
  • 15.Götz M., and Huttner W.B. (2005) The cell biology of neurogenesis Nat. Rev. Mol. Cell Biol., 6(10), 777–788. [DOI] [PubMed] [Google Scholar]
  • 16.Aaku-Saraste E., Hellwig A., and Huttner W.B. (1996) Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure–remodeling of the neuroepithelium prior to neurogenesis. Dev. Biol., 180, 664–679. [DOI] [PubMed] [Google Scholar]
  • 17.Zhadanov A.B., Provance D.W. Jr., Speer C.A., Coffin J.D., Goss D., Blixt J.A., Reichert C.M., and Mercer J.A. (1999) Absence of the tight junctional protein AF-6 disrupts epithelial cell–cell junctions and cell polarity during mouse development. Curr. Biol., 9(16), 880–888. [DOI] [PubMed] [Google Scholar]
  • 18.Manabe N., Hirai S., Imai F., Nakanishi H., Takai Y., and Ohno S. (2002) Association of ASIP/mPAR-3 with adherens junctions of mouse neuroepithelial cells. Dev. Dyn., 225, 61–69. [DOI] [PubMed] [Google Scholar]
  • 19.Kriegstein A.R., and Götz M. (2003) Radial glia diversity: a matter of cell fate. Glia, 43(1), 37–43. [DOI] [PubMed] [Google Scholar]
  • 20.Malatesta P., Appolloni I., and Calzolari F. (2008) Radial glia and neural stem cells. Cell Tissue Res., 331(1), 165–178. [DOI] [PubMed] [Google Scholar]
  • 21.Chenn A., Zhang Y.A., Chang B.T., and McConnell S.K. (1998) Intrinsic polarity of mammalian neuroepithelial cells. Mol. Cell. Neurosci., 11(4), 183–193. [DOI] [PubMed] [Google Scholar]
  • 22.Malatesta P., Hartfuss E., and Götz M. (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development, 127, 5253–5263. [DOI] [PubMed] [Google Scholar]
  • 23.Williams B.P., and Price J. (1995) Evidence for multiple precursors cell types in the embryonic rat cerebral cortex. Neuron, 14, 1181–1188. [DOI] [PubMed] [Google Scholar]
  • 24.Noctor S.C., Martinez-Cerdeño V., Ivic L., and Kriegstein A.R. (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci., 7(2), 136–144. [DOI] [PubMed] [Google Scholar]
  • 25.Kriegstein A., Noctor S., and Martinez-Cerdeño V. (2006) Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat. Rev. Neurosci., 7(11), 883–890. [DOI] [PubMed] [Google Scholar]
  • 26.Pontious A., Kowalczyk T., Englund C., and Hevner R.F. (2008) Role of intermediate progenitor cells in cerebral cortex development. Dev. Neurosci., 30(1-3), 24–32. [DOI] [PubMed] [Google Scholar]
  • 27.Haubensak W., Attardo A., Denk W., and Huttner W.B. (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. PNAS, 101, 3196–3201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Miyata T., Kawaguchi A., Saito K., Kawano M., Muto T., and Ogawa M. (2004) Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development, 131, 3133–3145. [DOI] [PubMed] [Google Scholar]
  • 29.Caviness V.S., Bhide P.G., and Nowakowski R.S. (2008) Histogenetic processes leading to the laminated neocortex: migration is only a part of the story. Dev. Neurosci., 30(1-3), 82–95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Huttner W.B., and Kosodo Y. (2005) Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system. Curr. Opin. Cell. Biol., 17(6), 648–657. [DOI] [PubMed] [Google Scholar]
  • 31.Iacopetti P., Michelini M., Stuckmann I., Oback B., Aaku-Saraste E., and Huttner W.B. (1999) Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. PNAS, 96, 4639–4644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Kosodo Y., Roper K., Haubensak W., Marzesco A.M., Corbell D., and Huttner W.B. (2004) Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J., 23, 2314–2324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Bond J., Roberts E., Mochida G.H., Hampshire D.J., Scott S., Askham J.M., Springell K., Mahadevan M., Crow Y.J., Markham A.F., Walsh C.A., and Woods C.G. (2002) ASPM is a major determinant of cerebral cortical size. Nat. Genet., 32(2), 316–320. [DOI] [PubMed] [Google Scholar]
  • 34.Bond J., Scott S., Hampshire D.J., Springell K., Corry P., Abramowicz M.J., Mochida G.H., Hennekam R.C., Maher E.R., Fryns J.P., Alswaid A., Jafri H., Rashid Y., Mubaidin A., Walsh C.A., Roberts E., and Woods C.G. (2003) Protein-truncating mutations in ASPM cause variable reduction in brain size. Am. J. Hum. Genet., 73(5), 1170–1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Fish J.L., Kosodo Y., Enard W., Paabo S., and Huttner W.B. (2006) Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. PNAS, 103(27), 10438–1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Fish J.L., Dehay C., Kennedy H., and Huttner W.B. (2008) Making bigger brains–the evolution of neural progenitor cell division. J. Cell Sci., 121(Pt 17), 2783–2793. [DOI] [PubMed] [Google Scholar]
  • 37.Wang X., Tsai J-W., Imai J-H., Lian W.N., Vallee R.B., and Shi S.H. (2009) Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature, 461, 947–956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Anderson C.T., and Stearns T. (2009) Centriole age underlies asynchronous primary cilium growth in mammalian cells. Curr. Biol., 19(17), 1498–1502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Yamashita Y.M., Mahowald A.P., Perlin J.R., and Fuller M.T. (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science, 315(5811), 518–521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Noctor S.C., Flint A.C., Weissman T.A., Dammerman R.S., and Kriegstein A.R. (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature, 409(6821), 714–720. [DOI] [PubMed] [Google Scholar]
  • 41.Britanova O., Alifragis P., Junek S., Jones K., Gruss P., and Tarabykin V. (2006) A novel mode of tangential migration of cortical projection neurons. Dev. Biol., 298(1), 299–311. [DOI] [PubMed] [Google Scholar]
  • 42.Rakic P. (2003) Developmental and evolutionary adaptations of cortical radial glia. Cer. Cor., 13(6), 541–549. [DOI] [PubMed] [Google Scholar]
  • 43.Angevine J.J., and Sidman R. (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature, 25(192), 766–768. [DOI] [PubMed] [Google Scholar]
  • 44.Rakic P. (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science, 183(4123), 425–427. [DOI] [PubMed] [Google Scholar]
  • 45.Caviness V., and Sidman R. (1973) Time of origin or corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J. Comp. Neurol., 148(2), 141–151. [DOI] [PubMed] [Google Scholar]
  • 46.Livesey F.J., and Cepko C.L. (2001) Vertebrate neural cell fate determination: lessons from the retina. Nat. Rev. Neurosci., 2(2), 109–118. [DOI] [PubMed] [Google Scholar]
  • 47.McConnell S.K., and Kaznowski C.E. (1991) Cell cycle dependence of laminar determination in developing cerebral cortex. Science, 254, 282–285. [DOI] [PubMed] [Google Scholar]
  • 48.Frantz G.D., and McConnell S.K. (1996) Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron, 17, 55–61. [DOI] [PubMed] [Google Scholar]
  • 49.Chen B., Wang S.S., Hattox A.M., Rayburn H., Nelson S.B., and McConnell S.K. (2008) The Fezf2-Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex. PNAS, 105(32), 11382–11387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Fukumitsu H., Ohtsuka M., Murai R., Nakamura H., Itch K., and Furukawa S. (2006) Brain-derived neurotrophic factor participates in determination of neuronal laminar fate in the developing mouse cerebral cortex. J. Neurosci., 26(51), 13218–13230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Olsson M., Campbell K., and Turnbull D.H. (1997) Specification of mouse telencephalic and mid-hindbrain progenitors following heterotopic ultrasound-guided embryonic transplantation. Neuron, 19(4), 761–772. [DOI] [PubMed] [Google Scholar]
  • 52.Campbell K., Olsson M., and Bjorklund A. (1995) Regional incorporation and site-specific differentiation of striatal precursors transplanted to the embryonic forebrain ventricle. Neuron, 15(6), 1259–1273. [DOI] [PubMed] [Google Scholar]
  • 53.Fishell G. (1995) Striatal precursors adopt cortical identities in response to local cues. Development, 121(3), 803–812. [DOI] [PubMed] [Google Scholar]
  • 54.Qian X., Shen Q., Goderie S.K., He W., Capela A., Davis A.A., and Temple S. (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron, 28(1), 69–80. [DOI] [PubMed] [Google Scholar]
  • 55.Shen Q., Wang Y., and Dimos J.T. (2006) The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat. Neurosci., 9(6), 743–751. [DOI] [PubMed] [Google Scholar]
  • 56.Seuntjens E., Nityanandam A., Miquelajauregui A., Debruyn J., Stryjewska A., Goebbels S., Nave K.A., Huylebroeck D., and Tarabykin V. (2009) Sipl regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nat. Neurosci., 12(11), 1373–1380. [DOI] [PubMed] [Google Scholar]
  • 57.Fukuchi-Shimogori T., and Grove E.A. (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science, 294, 1071–1074. [DOI] [PubMed] [Google Scholar]
  • 58.Toresson H., Potter S.S., and Campbell K. (2000) Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development, 127, 4361–4371. [DOI] [PubMed] [Google Scholar]
  • 59.Grove E.A., and Fukuchi-Shimogori T. (2003) Generating the cerebral cortical area map. Annu. Rev. Neurosci., 26, 355–380. [DOI] [PubMed] [Google Scholar]
  • 60.Wolpert L. (1996) One hundred years of positional information. Trends Genet., 12, 359–364. [DOI] [PubMed] [Google Scholar]
  • 61.Pierani A., and Wassef M. (2009) Cerebral cortex development: from progenitors patterning to neocortical size during evolution. Dev. Growth Differ., 51(3), 325–342. [DOI] [PubMed] [Google Scholar]
  • 62.Wichterle H., Lieberam I., Porter J.A., and Jessell T.M. (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell, 110, 385–397. [DOI] [PubMed] [Google Scholar]
  • 63.Dimos J.T., Rodolfa K.T., Niakan K.K., Weisenthal L.M., Mitsumoto H., Chung W., Croft G.F., Saphier G., Leibel R., Goland R., Wichterle H., Henderson C.E., and Eggan K. (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893), 1218–1221. [DOI] [PubMed] [Google Scholar]
  • 64.Miles G.B., Yohn D.C., Wichterle H., Jessell T.M., Rafuse V.F., and Brownstone R.M. (2004) Functional properties of motoneurons derived from mouse embryonic stem cells. J. Neurosci., 24(36), 7848–7858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Andersson E., Tryggvason U., Deng Q., Friling S., Alekseenko Z., Robert B., Perlmann T., and Ericson J. (2006) Identification of intrinsic determinants of midbrain dopamine neurons. Cell, 124(2), 393–405. [DOI] [PubMed] [Google Scholar]
  • 66.Arlotta P., Molyneaux B.J., Chen J., Inoue J., Kominami R., and Macklis J.D. (2005) Neuronal subtype specific genes that control corticospinal motor neuron development in vivo. Neuron, 45(2), 207–221. [DOI] [PubMed] [Google Scholar]
  • 67.Molyneaux B.J., Arlotta P., Hirata T., Hibi M., and Macklis J.D. (2005) Fezl is required for the birth and specification of corticospinal motor neurons. Neuron, 47(6), 817–831. [DOI] [PubMed] [Google Scholar]
  • 68.Molyneaux B.J., Arlotta P., Fame R.M., Macdonald J.L., MacQuarrie K.L., and Macklis J.D. (2009) Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons. J. Neurosci., 29(39), 12343–12354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Molnár Z., and Cheung A.F.P. (2006) Towards the classification of subpopulations of layer V pyramidal projection neurons. Neuroscience Res., 55(2), 105–115. [DOI] [PubMed] [Google Scholar]
  • 70.Canty A.J., and Murphy M. (2008) Molecular mechanisms of axon guidance in the developing corticospinal tract. Prog. Neurobiol., 85, 214–235. [DOI] [PubMed] [Google Scholar]
  • 71.Liang F.Y., Moret V., Wiesendanger M., and Rouiller E.M. (1991) Corticomotoneuronal connections in the rat: evidence from double-labeling of motoneurons and corticospinal axon arborizations. J. Comp. Neurol., 311(3), 356–366. [DOI] [PubMed] [Google Scholar]
  • 72.Hirata T., Suda Y., Nakao K., Narimatsu M., Hirano T., and Hibi M. (2004) Zinc finger gene fez-like functions in the formation of subplate neurons and thalamocortical axons. Dev. Dyn., 230(3), 546–556. [DOI] [PubMed] [Google Scholar]
  • 73.Lai T., Jabaudon D., Molyneaux B.J., Azim E., Arlotta P., Menezes J.R., and Macklis J.D. (2008) SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron, 57(2), 232–247. [DOI] [PubMed] [Google Scholar]
  • 74.Chen B., Schaevitz L.R., and McConnell S.K. (2005) Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. PNAS, 102(47), 17184–17189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Joshi P.S., Molyneaux B.Y., Feng L., Xie X., Macklis J.D., and Gan L. (2008) Bhlhb5 regulates the postmitotic acquisition of area identities in layers II-V of the developing neocortex. Neuron, 60(2), 258–272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Watanabe K., Kamiya D., Nishiyama A., Katayama T., Nozaki S., Kawasaki H., Watanabe Y., Mizuseki K., and Sasai Y. (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci., 8(3), 288–296. [DOI] [PubMed] [Google Scholar]
  • 77.Gaspard N., Bouschet T., Hourez T., Dimidschstein J., Naeije G., van den Ameele J., Espuny-Camacho I., Herpoel A., Passante L., Schiffmann S.N., Gaillard A., and Vanderhaeghen P. (2008) An intrinsic mechanism of corticogenesis from embryonic stem cells Nature, 455(18), 351–358. [DOI] [PubMed] [Google Scholar]
  • 78.Ideguchi M., Palmer T.D., Recht L.D., and Weimann J.M. (2010) Murine embryonic stem cell-derived pyramidal neurons integrate into the cerebral cortex and appropriately project axons to subcortical targets. J. Neurosci., 30(3), 894–904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Alcamo E.A., Chirivella L., Dautzenberg M., Dobreva G., Fariñas I., Grosschedl R., and McConnell S.K. (2008) Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron, 57(3), 364–377. [DOI] [PubMed] [Google Scholar]
  • 80.Britanova O., de Juan Romero C., Cheung A., Kwan K.Y., Schwark M., Gyorgy A., Vogel T., Akopov S., Mitkovski M., Agoston D., Sestan N., Molnar Z., and Tarabykin V. (2008) Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron, 57(3), 378–392. [DOI] [PubMed] [Google Scholar]
  • 81.Ebert A.D., Yu J., Rose F.F. Jr., Mattis V.B., Lorson C.L., Thomson J.A., and Svendsen C.N. (2009) Induced pluripotent stem cells frrom a spinal muscular atrophy patient. Nature, 457(7227), 277–280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Bjorklund L.M., Sánchez-Pernaute R., Chung S., Andersson T., Chen I.Y., McNaught K.S., Brownell A.L., Jenkins B.G., Wehlestedt C., Kim K.S., and Isacson O. (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. PNAS, 99(4), 2344–2349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Park I.H., Arora N., Huo H., Maherall N., Ahfeldt T., Shimamura A., Lensch M.W., Cowan C., Hochedlinger K., and Daley G.Q. (2008) Disease-specific induced pluripotent stem cells. Cell, 134(5), 877–886. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Science Progress are provided here courtesy of SAGE Publications

RESOURCES