Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Mar 28;92(7):2612–2616. doi: 10.1073/pnas.92.7.2612

Iontophoresis for modulation of cardiac drug delivery in dogs.

V Labhasetwar 1, T Underwood 1, S P Schwendeman 1, R J Levy 1
PMCID: PMC42268  PMID: 7708693

Abstract

Cardiac arrhythmias are a frequent cause of death and morbidity. Conventional antiarrhythmia therapy involving oral or intravenous medication is often ineffective and complicated by drug-associated side effects. Previous studies from our laboratory have demonstrated the advantages of cardiac drug-polymer implants for enhanced efficacy for cardiac arrhythmia therapy compared with conventional administration. However, these studies were based on systems that deliver drugs at a fixed release rate. Modulation of the drug delivery rate has the advantage of regulating the amount of the drug delivered depending upon the disease state of the patient. We hypothesized that iontophoresis could be used to modulate cardiac drug delivery. In this study, we report our investigations of a cardiac drug implant in dogs that is capable of iontophoretic modulation of the administration of the antiarrhythmic agent sotalol. We used a heterogeneous cation-exchange membrane (HCM) as an electrically sensitive and highly efficient rate-limiting barrier on the cardiac-contacting surface of the implant. Thus, electric current is passed only through the HCM and not the myocardium. The iontophoretic cardiac implant demonstrated in vitro drug release rates that were responsive to current modulation. In vivo results in dogs have confirmed that iontophoresis resulted in regional coronary enhancement of sotalol levels with current-responsive increases in drug concentrations. We also observed acute current-dependent changes in ventricular effective refractory periods reflecting sotalol-induced refractoriness due to regional drug administration. In 30-day dog experiments, iontophoretic cardiac implants demonstrated robust sustained function and reproducible modulation of drug delivery kinetics.

Full text

PDF
2612

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avitall B., Hare J., Zander G., Bockoff C., Tchou P., Jazayeri M., Akhtar M. Iontophoretic transmyocardial drug delivery. A novel approach to antiarrhythmic drug therapy. Circulation. 1992 Apr;85(4):1582–1593. doi: 10.1161/01.cir.85.4.1582. [DOI] [PubMed] [Google Scholar]
  2. Brugada P. "Torsade de pointes". Pacing Clin Electrophysiol. 1988 Dec;11(12):2246–2249. doi: 10.1111/j.1540-8159.1988.tb05991.x. [DOI] [PubMed] [Google Scholar]
  3. Edelman E. R., Brown L., Taylor J., Langer R. In vitro and in vivo kinetics of regulated drug release from polymer matrices by oscillating magnetic fields. J Biomed Mater Res. 1987 Mar;21(3):339–353. doi: 10.1002/jbm.820210307. [DOI] [PubMed] [Google Scholar]
  4. Fernández-Ortiz A., Meyer B. J., Mailhac A., Falk E., Badimon L., Fallon J. T., Fuster V., Chesebro J. H., Badimon J. J. A new approach for local intravascular drug delivery. Iontophoretic balloon. Circulation. 1994 Apr;89(4):1518–1522. doi: 10.1161/01.cir.89.4.1518. [DOI] [PubMed] [Google Scholar]
  5. Kost J., Leong K., Langer R. Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7663–7666. doi: 10.1073/pnas.86.20.7663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Labhasetwar V., Underwood T., Gallagher M., Murphy G., Langberg J., Levy R. J. Sotalol controlled-release systems for arrhythmias: in vitro characterization, in vivo drug disposition, and electrophysiologic effects. J Pharm Sci. 1994 Feb;83(2):156–164. doi: 10.1002/jps.2600830209. [DOI] [PubMed] [Google Scholar]
  7. Labhasetwar V., Underwood T., Heil R. W., Jr, Gallagher M., Langberg J., Levy R. J. Epicardial administration of ibutilide from polyurethane matrices: effects on defibrillation threshold and electrophysiologic parameters. J Cardiovasc Pharmacol. 1994 Nov;24(5):826–840. doi: 10.1097/00005344-199424050-00019. [DOI] [PubMed] [Google Scholar]
  8. Levy R. J., Wolfrum J., Schoen F. J., Hawley M. A., Lund S. A., Langer R. Inhibition of calcification of bioprosthetic heart valves by local controlled-release diphosphonate. Science. 1985 Apr 12;228(4696):190–192. doi: 10.1126/science.3919445. [DOI] [PubMed] [Google Scholar]
  9. Schwendeman S. P., Amidon G. L., Labhasetwar V., Levy R. J. Modulated drug release using iontophoresis through heterogeneous cation-exchange membranes. 2. Influence of cation-exchanger content on membrane resistance and characteristic times. J Pharm Sci. 1994 Oct;83(10):1482–1494. doi: 10.1002/jps.2600831023. [DOI] [PubMed] [Google Scholar]
  10. Siden R., Kadish A., Flowers W., Kutas L., Bieneman B. K., DePietro J., Jenkins J. P., Gallagher K. P., Levy R. J. Epicardial controlled-release verapamil prevents ventricular tachycardia episodes induced by acute ischemia in a canine model. J Cardiovasc Pharmacol. 1992 May;19(5):798–809. [PubMed] [Google Scholar]
  11. Villa A. E., Guzman L. A., Chen W., Golomb G., Levy R. J., Topol E. J. Local delivery of dexamethasone for prevention of neointimal proliferation in a rat model of balloon angioplasty. J Clin Invest. 1994 Mar;93(3):1243–1249. doi: 10.1172/JCI117078. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES