Abstract
The taxonomic relationship between some hypha-forming Cryptococcus neoformans strains and those that morphologically fit the standard description of this species was determined on the basis of DNA base ratios and DNA-DNA duplex formation. The average guanosine plus cytosine content, as estimated from melting temperature profiles, varied between 43.0 and 45.9% for all C. neoformans strains examined. The relative homology was at least 60% for all C. neoformans strains when the labeled DNA was from either a hyphal variant or a standard strain. The nonpathogenic cryptococci, C. laurentii and C. uniguttulatus, showed less than 10% relative homology with either the hyphal or standard C. neoformans strains. Thus, hyphal and standard strains of C. neoformans were sufficiently related to be considered members of the same species.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bicknell J. N., Douglas H. C. Nucleic acid homologies among species of Saccharomyces. J Bacteriol. 1970 Feb;101(2):505–512. doi: 10.1128/jb.101.2.505-512.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brenner D. J., Falkow S. Genetics of the Enterobacteriaceae. C. Molecular relationships among members of the Enterobacteriaceae. Adv Genet. 1971;16:81–118. doi: 10.1016/s0065-2660(08)60355-7. [DOI] [PubMed] [Google Scholar]
- De Ley J. Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol. 1970 Mar;101(3):738–754. doi: 10.1128/jb.101.3.738-754.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
- JONES A. S. USE OF ALKYLTRIMETHYLAMMONIUM BROMIDES FOR THE ISOLATION OF RIBO- AND DESOXYRIBO-NUCLEIC ACIDS. Nature. 1963 Jul 20;199:280–282. doi: 10.1038/199280b0. [DOI] [PubMed] [Google Scholar]
- MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
- STAIB F. MEMBRANFILTRATION UND NEGERSAAT (GUIZOTIA ABYSSINICA)-NAEHRBODEN FUER DEN CRYPTOCOCCUS NEOFORMANS-NACHWEIS (BRAUNFARBEFFEKT) Z Hyg Infektionskr. 1963 Oct 25;149:329–336. [PubMed] [Google Scholar]
- Shadomy H. J., Lurie H. I. Histopathological observations in experimental cryptococcosis caused by a hypha-producing strain of Cryptococcus neoformans (Coward strain) in mice. Sabouraudia. 1971 Mar;9(1):6–9. doi: 10.1080/00362177185190031. [DOI] [PubMed] [Google Scholar]
- Shadomy H. J., Utz J. P. Preliminary studies on a hyphaforming mutant of Cryptococcus neoformans. Mycologia. 1966 May-Jun;58(3):383–390. [PubMed] [Google Scholar]
- Storck R., Alexopoulos C. J. Deoxyribonucleic acid of fungi. Bacteriol Rev. 1970 Jun;34(2):126–154. doi: 10.1128/br.34.2.126-154.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Storck R., Alexopoulos C. J., Phaff H. J. Nucleotide composition of deoxyribonucleic acid of some species of Cryptococcus, Rhodotorula, and Sporobolomyces. J Bacteriol. 1969 Jun;98(3):1069–1072. doi: 10.1128/jb.98.3.1069-1072.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]