Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1973 Oct;8(4):563–572. doi: 10.1128/iai.8.4.563-572.1973

Transmission of lac by the Sex Factor E in Erwinia Strains from Human Clinical Sources

Arun K Chatterjee 1, Mortimer P Starr 1
PMCID: PMC422892  PMID: 4582635

Abstract

Lactose-utilizing (Lac+) strains of Erwinia spp. from human clinical material transfer lac by conjugation to plant strains of Erwinia herbicola and Erwinia amylovora, to other Erwinia strains from human clinical sources, and also to Escherichia coli, Paracolobactrum arizonae, Salmonella typhimurium, and Shigella dysenteriae. The frequency of this transfer varies with the donor and recipient strains employed. The lac genes appear stable in these exconjugants, and they are not cured by acridine orange. The Lac+ exconjugants transfer lac to an Escherichia coli F Lac strain; the frequency of this transfer is high with E. herbicola and S. typhimurium exconjugants and relatively low with other exconjugants. The most studied Erwinia donor strain from human clinical material (EH133) and its Lac+ exconjugants are insensitive to the F-specific phage, M13. P1-mediated transduction of lac, by using a Lac+ exconjugant of E. coli as the donor and an E. coli F Lac strain as the recipient, revealed that all 50 Lac+ transduced clones tested also inherited donor ability, suggesting a close linkage between the Erwinia sex factor (designated as E) and the lac genes. The E. coli culture harboring E-lac (E and the lac genes linked to it) does not restrict phages T1, T7, and λvir. E-lac is compatible with F'his, R100 drd-56 (F-like), and R64 drd-11 (I-like); cells harboring F'his or one of the R factors do not show super-infection immunity to the incoming E-lac, and E-lac plus one of the other plasmids can coexist stably in the same cell. The fertility of cells harboring F'his or R100 drd-56—as determined by the frequency of conjugal transfer of his or of the resistance determinant (Tetr in case of R100 drd-56) and also by sensitivity to F-specific phage (M13)—is not altered by the presence of E-lac, and this suggests that the sex factor E might belong to the fi class.

Full text

PDF
563

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bannister D., Glover S. W. Restriction and modification of bacteriophages by R+ strains of Escherichia coli K12. Biochem Biophys Res Commun. 1968 Mar 27;30(6):735–738. doi: 10.1016/0006-291x(68)90575-5. [DOI] [PubMed] [Google Scholar]
  2. Bannister D., Glover S. W. The isolation and properties of non-restricting mutants of two different host specificities associated with drug resistance factors. J Gen Microbiol. 1970 Apr;61(1):63–71. doi: 10.1099/00221287-61-1-63. [DOI] [PubMed] [Google Scholar]
  3. Bottone E., Schneierson S. S. Erwinia species: an emerging human pathogen. Am J Clin Pathol. 1972 Mar;57(3):400–405. doi: 10.1093/ajcp/57.3.400. [DOI] [PubMed] [Google Scholar]
  4. Bouanchaud D. H., Chabbert Y. A. Stable coexistence of three resistance factors (fi-) in Salmonella panama and Escherichia coli K12. J Gen Microbiol. 1969 Sep;58(1):107–113. doi: 10.1099/00221287-58-1-107. [DOI] [PubMed] [Google Scholar]
  5. Bouanchaud D. H., Scavizzi M. R., Chabbert Y. A. Elimination by ethidium bromide of antibiotic resistance in enterobacteria and staphylococci. J Gen Microbiol. 1968 Dec;54(3):417–425. doi: 10.1099/00221287-54-3-417. [DOI] [PubMed] [Google Scholar]
  6. Brenchley J. E., Magasanik B. Klebsiella aerogenes strain carrying drug-resistance determinants and a lac plasmid. J Bacteriol. 1972 Oct;112(1):200–205. doi: 10.1128/jb.112.1.200-205.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chabbert Y. A., Scavizzi M. R., Witchitz J. L., Gerbaud G. R., Bouanchaud D. H. Incompatibility groups and the classification of fi - resistance factors. J Bacteriol. 1972 Nov;112(2):666–675. doi: 10.1128/jb.112.2.666-675.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chatterjee A. K., Gibbins L. N. Induction of nonpigmented variants of Erwinia herbicola by incubation at supraoptimal temperatures. J Bacteriol. 1971 Jan;105(1):107–112. doi: 10.1128/jb.105.1.107-112.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chatterjee A. K., Starr M. P. Transfer among Erwinia spp. and other enterobacteria of antibiotic resistance carried on R factors. J Bacteriol. 1972 Oct;112(1):576–584. doi: 10.1128/jb.112.1.576-584.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Datta N., Hedges R. W. Host ranges of R factors. J Gen Microbiol. 1972 May;70(3):453–460. doi: 10.1099/00221287-70-3-453. [DOI] [PubMed] [Google Scholar]
  11. Dennison S. Naturally occurring R factor, derepressed for pilus synthesis, belonging to the same compatibility group as the sex factor F of Escherichia coli K-12. J Bacteriol. 1972 Jan;109(1):416–422. doi: 10.1128/jb.109.1.416-422.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dubnau E., Stocker B. A. Behavior of three colicine factors and an R (drug resistance) factor in Hfr crosses in Salmonella typhimurium. Genet Res. 1967 Jun;9(3):283–297. doi: 10.1017/s0016672300010582. [DOI] [PubMed] [Google Scholar]
  13. FALKOW S., WOHLHIETER J. A., CITARELLA R. V., BARON L. S. TRANSFER OF EPISOMIC ELEMENTS TO PROTEUS. II. NATURE OF LAC+ PROTEUS STRAINS ISOLATED FROM CLINICAL SPECIMENS. J Bacteriol. 1964 Dec;88:1598–1601. doi: 10.1128/jb.88.6.1598-1601.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Falkow S., Baron L. S. EPISOMIC ELEMENT IN A STRAIN OF SALMONELLA TYPHOSA. J Bacteriol. 1962 Sep;84(3):581–589. doi: 10.1128/jb.84.3.581-589.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gilardi G. L., Bottone E., Birnbaum M. Unusual fermentative, gram-negative bacilli isolated from clinical specimens. I. Characterization of Erwinia strains of the "lathyri-herbicola group". Appl Microbiol. 1970 Jul;20(1):151–155. doi: 10.1128/am.20.1.151-155.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gilardi G. L., Bottone E. Erwinia and yellow-pigmented Enterobacter isolates from human sources. Antonie Van Leeuwenhoek. 1971;37(4):529–535. doi: 10.1007/BF02218523. [DOI] [PubMed] [Google Scholar]
  17. Graham D. C., Hodgkiss W. Identity of gram negative, yellow pigmented, fermentative bacteria isolated from plants and animals. J Appl Bacteriol. 1967 Apr;30(1):175–189. doi: 10.1111/j.1365-2672.1967.tb00287.x. [DOI] [PubMed] [Google Scholar]
  18. Grindley N. D., Grindley J. N., Anderson E. S. R factor compatibility groups. Mol Gen Genet. 1972;119(4):287–297. doi: 10.1007/BF00272087. [DOI] [PubMed] [Google Scholar]
  19. Hirota Y. THE EFFECT OF ACRIDINE DYES ON MATING TYPE FACTORS IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1960 Jan;46(1):57–64. doi: 10.1073/pnas.46.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kameda M., Suzuki M., Nakajima T., Harada K., Mitsuhashi S. Genetic properties of a T factor and T-r recombinants. Jpn J Microbiol. 1970 Sep;14(5):339–349. doi: 10.1111/j.1348-0421.1970.tb00534.x. [DOI] [PubMed] [Google Scholar]
  21. Khatoon H., Iyer R. V. Stable coexistence of Rfi factors in Escherichia coli. Can J Microbiol. 1971 May;17(5):669–675. doi: 10.1139/m71-108. [DOI] [PubMed] [Google Scholar]
  22. Lakso J. U., Starr M. P. Comparative injuriousness to plants of Erwinia spp. and other enterobacteria from plants and animals. J Appl Bacteriol. 1970 Dec;33(4):692–707. doi: 10.1111/j.1365-2672.1970.tb02252.x. [DOI] [PubMed] [Google Scholar]
  23. MAEKELAE O., MAEKELAE P. H., SOIKKELI S. SEX-SPECIFICITY OF THE BACTERIOPHAGE T7. Ann Med Exp Biol Fenn. 1964;42:188–195. [PubMed] [Google Scholar]
  24. MITSUHASHI S., HARADA K., HASHIMOTO H., KAMEDA M., SUZUKI M. Combination of two types of transmissible drug-resistance factors in a host bacterium. J Bacteriol. 1962 Jul;84:9–16. doi: 10.1128/jb.84.1.9-16.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MURASCHI T. F., FRIEND M., BOLLES D. ERWINIA-LIKE MICROORGANISMS ISOLATED FROM ANIMAL AND HUMAN HOSTS. Appl Microbiol. 1965 Mar;13:128–131. doi: 10.1128/am.13.2.128-131.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Meyers B. R., Bottone E., Hirschman S. Z., Schneierson S. S. Infections caused by microorganisms of the genus Erwinia. Ann Intern Med. 1972 Jan;76(1):9–14. doi: 10.7326/0003-4819-76-1-9. [DOI] [PubMed] [Google Scholar]
  27. Meynell E., Meynell G. G., Datta N. Phylogenetic relationships of drug-resistance factors and other transmissible bacterial plasmids. Bacteriol Rev. 1968 Mar;32(1):55–83. doi: 10.1128/br.32.1.55-83.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mildvan D., Bottone E., Hirschman S. Z., Cornell A. Septicemia caused by a microorganism of the genus Erwinia. Mt Sinai J Med. 1971 Mar-Apr;38(2):267–272. [PubMed] [Google Scholar]
  29. Novick R. P. Extrachromosomal inheritance in bacteria. Bacteriol Rev. 1969 Jun;33(2):210–263. doi: 10.1128/br.33.2.210-263.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. OTSUJI N., SEKIGUCHI M., IIJIMA T., TAKAGI Y. Induction of phage formation in the lysogenic Escherichia coli K-12 by mitomycin C. Nature. 1959 Oct 3;184(Suppl 14):1079–1080. doi: 10.1038/1841079b0. [DOI] [PubMed] [Google Scholar]
  31. Reeve E. C., Braithwaite J. A. Fk-lac, an episome with unusual properties found in a wild strain of a Klebsiella species. Nature. 1970 Oct 10;228(5267):162–164. doi: 10.1038/228162a0. [DOI] [PubMed] [Google Scholar]
  32. Skerman F. J., Formal S. B., Falkow S. Plasmid-associated enterotoxin production in a strain of Escherichia coli isolated from humans. Infect Immun. 1972 Apr;5(4):622–624. doi: 10.1128/iai.5.4.622-624.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Slotnick I. J., Tulman L. A human infection caused by an Erwinia species. Am J Med. 1967 Jul;43(1):147–150. doi: 10.1016/0002-9343(67)90157-x. [DOI] [PubMed] [Google Scholar]
  34. Smith H. W., Gyles C. L. The relationship between different transmissible plasmids introduced by F into the same strain of Escherichia coli K12. J Gen Microbiol. 1970 Aug;62(3):227–285. doi: 10.1099/00221287-62-3-277. [DOI] [PubMed] [Google Scholar]
  35. Smith H. W., Halls S. The transmissible nature of the genetic factor in Escherichia coli that controls haemolysin production. J Gen Microbiol. 1967 Apr;47(1):153–161. doi: 10.1099/00221287-47-1-153. [DOI] [PubMed] [Google Scholar]
  36. Starr M. P., Chatterjee A. K. The genus Erwinia: enterobacteria pathogenic to plants and animals. Annu Rev Microbiol. 1972;26:389–426. doi: 10.1146/annurev.mi.26.100172.002133. [DOI] [PubMed] [Google Scholar]
  37. Starr M. P., Mandel M. DNA base composition and taxonomy of phyopathogenic and other enterobacteria. J Gen Microbiol. 1969 Apr;56(1):113–123. doi: 10.1099/00221287-56-1-113. [DOI] [PubMed] [Google Scholar]
  38. Tilton R. C., Murphy J. R., van Soestbergen A. Erwinia species from human sources. Am J Clin Pathol. 1971 Aug;56(2):187–192. doi: 10.1093/ajcp/56.2.187. [DOI] [PubMed] [Google Scholar]
  39. Von Graevenitz A. Erwinia species isolates. Ann N Y Acad Sci. 1970 Oct 30;174(2):436–443. doi: 10.1111/j.1749-6632.1970.tb45571.x. [DOI] [PubMed] [Google Scholar]
  40. Von Graevenitz A. Recognition and differential diagnosis of Erwinia herbicola strains isolated in the hospital. Pathol Microbiol (Basel) 1971;37(1):84–88. doi: 10.1159/000162308. [DOI] [PubMed] [Google Scholar]
  41. WATANABE T., NISHIDA H., OGATA C., ARAI T., SATO S. EPISOME-MEDIATED TRANSFER OF DRUG RESISTANCE IN ENTEROBACTERIACEAE. VII. TWO TYPES OF NATURALLY OCCURRING R FACTORS. J Bacteriol. 1964 Sep;88:716–726. doi: 10.1128/jb.88.3.716-726.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Watanabe T., Ogata C. Episome-mediated transfer of drug resistance in Enterobacteriaceae. IX. Recombination of an R factor with F. J Bacteriol. 1966 Jan;91(1):43–50. doi: 10.1128/jb.91.1.43-50.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wechsler A., Bottone E., Lasser R., Korenman G. Brain abscess caused by an Erwinia species. Report of a case and review of the literature. Am J Med. 1971 Nov;51(5):680–684. doi: 10.1016/0002-9343(71)90294-4. [DOI] [PubMed] [Google Scholar]
  44. White J. N., Starr M. P. Glucose fermentation endproducts of Erwinia spp. and other enterobacteria. J Appl Bacteriol. 1971 Jun;34(2):459–475. doi: 10.1111/j.1365-2672.1971.tb02306.x. [DOI] [PubMed] [Google Scholar]
  45. Wolf B., Newman A., Glaser D. A. On the origin and direction of replication of the Escherichia coli K12 chromosome. J Mol Biol. 1968 Mar 28;32(3):611–629. doi: 10.1016/0022-2836(68)90346-x. [DOI] [PubMed] [Google Scholar]
  46. Yoshimori R., Roulland-Dussoix D., Boyer H. W. R factor-controlled restriction and modification of deoxyribonucleic acid: restriction mutants. J Bacteriol. 1972 Dec;112(3):1275–1279. doi: 10.1128/jb.112.3.1275-1279.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES