Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1974 Oct;10(4):810–815. doi: 10.1128/iai.10.4.810-815.1974

Role of Interferon in Six Cell Lines Persistently Infected with Rubella Virus

Trevor L Stanwick a, J V Hallum a,1
PMCID: PMC423026  PMID: 4214783

Abstract

Presistent infections with rubella virus were established in baby hamster kidney, BSC-1, HeLa, RK-13, rabbit embryo chondrocyte, and Vero cell lines. All of the cultures except Vero continually produced rubella virus and interferon to which the virus was sensitive. Concurrently, only the Vero cells did not display interference against superinfection with Newcastle disease and vesicular stomatitis viruses. The addition of 1,000 U of exogenous interferon to the cultures cured only the rabbit embryo and Vero cells of the persistent infection. That the interferon is not required for the initiation and maintenance of rubella viral persistence in vitro is implied by the following. (1) Vero cells were persistently infected in the absence of interferon; (2) actinomycin D or cortisone inhibited interferon synthesis but not the rubella viral infection; and (3) cells continuously cultured in the presence of cortisone maintained a viral persistence without interferon synthesis. On the other hand, interferon seems to be responsible for the viral interference; Vero cells infected with rubella virus and cultures inoculated with rubella virus in the presence of actinomycin D or cortisone did not display interference against Newcastle disease or vesicular stomatitis viruses.

Full text

PDF
810

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHANOCK R. M., HAYFLICK L., BARILE M. F. Growth on artificial medium of an agent associated with atypical pneumonia and its identification as a PPLO. Proc Natl Acad Sci U S A. 1962 Jan 15;48:41–49. doi: 10.1073/pnas.48.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. De Somer P., Billiau A., De Clercq E., Schonne E. Rubella virus interference and interferon production. Antonie Van Leeuwenhoek. 1967;33(3):237–245. doi: 10.1007/BF02045569. [DOI] [PubMed] [Google Scholar]
  3. Desmyter J., Melnick J. L., Rawls W. E. Defectiveness of interferon production and of rubella virus interference in a line of African green monkey kidney cells (Vero). J Virol. 1968 Oct;2(10):955–961. doi: 10.1128/jvi.2.10.955-961.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Desmyter J., Rawls W. E., Melnick J. L., Yow M. D., Barrett F. F. Interferon in congenital rubella: response to live attenuated measles vaccine. J Immunol. 1967 Oct;99(4):771–777. [PubMed] [Google Scholar]
  5. Downie J. C., Oxford J. S. Persistent rubella virus infection in hamster lung cells. J Gen Virol. 1969 Jul;5(1):11–17. doi: 10.1099/0022-1317-5-1-11. [DOI] [PubMed] [Google Scholar]
  6. Furman P. A., Hallum J. V. RNA-dependent DNA polymerase activity in preparations of a mutant of Newcastle disease virus arising from persistently infected L cells. J Virol. 1973 Sep;12(3):548–555. doi: 10.1128/jvi.12.3.548-555.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grayzel A. I., Beck C. Rubella infection of synovial cells and the resistance of cells derived from patients with rheumatoid arthritis. J Exp Med. 1970 Feb;131(2):367–375. doi: 10.1084/jem.131.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hallum J. V., Thacore H. R., Youngner J. S. Effect of exogenous interferon on L cells persistently infected with Newcastle disease virus. Infect Immun. 1972 Jan;5(1):145–146. doi: 10.1128/iai.5.1.145-146.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kilburn D. G., van Wezel A. L. The effect of growth rate in continuous-flow cultures on the replication of rubella virus in BHK cells. J Gen Virol. 1970 Oct;9(1):1–7. doi: 10.1099/0022-1317-9-1-1. [DOI] [PubMed] [Google Scholar]
  10. MCCARTHY K., TAYLOR-ROBINSON C. H., PILLINGER S. E. ISOLATION OF RUBELLA VIRUS FROM CASES IN BRITAIN. Lancet. 1963 Sep 21;2(7308):593–598. doi: 10.1016/s0140-6736(63)90393-3. [DOI] [PubMed] [Google Scholar]
  11. Maassab H. F., Veronelli J. A. Characteristics of serially propagated monkey kidney cell cultures with persistent rubella infection. J Bacteriol. 1966 Jan;91(1):436–441. doi: 10.1128/jb.91.1.436-441.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mifune K., Desmyter J., Rawls W. E. Effect of exogenous interferon on rubella virus production in carrier cultures of cells defective in interferon production. Infect Immun. 1970 Aug;2(2):132–138. doi: 10.1128/iai.2.2.132-138.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. NEVA F. A., WELLER T. H. RUBELLA INTERFERON AND FACTORS INFLUENCING THE INDIRECT NEUTRALIZATION TEST FOR RUBELLA ANTIBODY. J Immunol. 1964 Sep;93:466–473. [PubMed] [Google Scholar]
  14. PARKMAN P. D., BUESCHER E. L., ARTENSTEIN M. S., MCCOWN J. M., MUNDON F. K., DRUZD A. D. STUDIES OF RUBELLA. I. PROPERTIES OF THE VIRUS. J Immunol. 1964 Oct;93:595–607. [PubMed] [Google Scholar]
  15. PLOTKIN S. A., BOUE A., BOUE J. G. THE IN VITRO GROWTH OF RUBELLA VIRUS IN HUMAN EMBRYO CELLS. Am J Epidemiol. 1965 Jan;81:71–85. doi: 10.1093/oxfordjournals.aje.a120499. [DOI] [PubMed] [Google Scholar]
  16. PLOTKIN S. A. PLAQUING OF RUBELLA VIRUS IN RK 13 CELLS. Arch Gesamte Virusforsch. 1965;16:423–425. doi: 10.1007/BF01253850. [DOI] [PubMed] [Google Scholar]
  17. Rawls W. E., Desmyter J., Melnick J. L. Virus carrier cells and virus-free cells in fetal rubella. Proc Soc Exp Biol Med. 1968 Nov;129(2):477–483. doi: 10.3181/00379727-129-33348. [DOI] [PubMed] [Google Scholar]
  18. Rawls W. E., Melnick J. L. Rubella virus carrier cultures derived from congenitally infected infants. J Exp Med. 1966 May 1;123(5):795–816. doi: 10.1084/jem.123.5.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SVEDMYR A. PERSISTENT INFECTION WITH RUBELLA VIRUS IN RK 13 CELLS. Arch Gesamte Virusforsch. 1965;16:464–465. doi: 10.1007/BF01253855. [DOI] [PubMed] [Google Scholar]
  20. Schmidt N. J., Dennis J., Lennette E. H. Hemadsorption and hemadsorption inhibition tests for rubella virus. Arch Gesamte Virusforsch. 1968;25(3):308–320. doi: 10.1007/BF01556559. [DOI] [PubMed] [Google Scholar]
  21. Sedwick W. D., Wiktor T. J. Reproducible plaquing system for rabies, lymphocytic choriomeningitis,k and other ribonucleic acid viruses in BHK-21-13S agarose suspensions. J Virol. 1967 Dec;1(6):1224–1226. doi: 10.1128/jvi.1.6.1224-1226.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith J. L., Early E. M., London W. T., Fuccillo D. A., Sever J. L. Persistent rubella virus production in embryonic rabbit chondrocyte cell cultures. Proc Soc Exp Biol Med. 1973 Sep;143(4):1037–1041. doi: 10.3181/00379727-143-37465. [DOI] [PubMed] [Google Scholar]
  23. TAYLOR ROBINSON C. H., MCCARTHY K., GRYLLS S. G., O'RYAN E. M. PLAQUE FORMATION BY RUBELLA VIRUS. Lancet. 1964 Jun 20;1(7347):1364–1365. doi: 10.1016/s0140-6736(64)92044-6. [DOI] [PubMed] [Google Scholar]
  24. Thomssen R., Suhrkamp E., Bonk S. Inability of rubella virus interference to reverse the inhibition of cellular protein synthetis caused by poliovirus. Arch Gesamte Virusforsch. 1972;37(1):62–70. doi: 10.1007/BF01241151. [DOI] [PubMed] [Google Scholar]
  25. Vaheri A., Sedwick W. D., Plotkin S. A., Maes R. Cytopathic effect of rubella virus in RHK21 cells and growth to high titers in suspension culture. Virology. 1965 Oct;27(2):239–241. doi: 10.1016/0042-6822(65)90170-4. [DOI] [PubMed] [Google Scholar]
  26. WELLER T. H., NEVA F. A. BIOLOGICAL CHARACTERISTICS OF RUBELLA VIRUS AS ASSAYED IN A HUMAN AMNION CULTURE SYSTEM. Arch Gesamte Virusforsch. 1965;16:393–400. doi: 10.1007/BF01253845. [DOI] [PubMed] [Google Scholar]
  27. Wong K. T., Baron S., Ward T. G. Rubella virus: role of interferon during infection of African green monkey kidney tissue cultures. J Immunol. 1967 Dec;99(6):1140–1149. [PubMed] [Google Scholar]
  28. Youngner J. S., Scott A. W., Hallum J. V., Stinebring W. R. Interferon production by inactivated Newcastle disease virus in cell cultures and in mice. J Bacteriol. 1966 Oct;92(4):862–868. doi: 10.1128/jb.92.4.862-868.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES