Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Mar 28;92(7):2889–2893. doi: 10.1073/pnas.92.7.2889

In vivo cytokine gene transfer by gene gun reduces tumor growth in mice.

W H Sun 1, J K Burkholder 1, J Sun 1, J Culp 1, J Turner 1, X G Lu 1, T D Pugh 1, W B Ershler 1, N S Yang 1
PMCID: PMC42324  PMID: 7708743

Abstract

Implantation of tumor cells modified by in vitro cytokine gene transfer has been shown by many investigators to result in potent in vivo antitumor activities in mice. Here we describe an approach to tumor immunotherapy utilizing direct transfection of cytokine genes into tumor-bearing animals by particle-mediated gene transfer. In vivo transfection of the human interleukin 6 gene into the tumor site reduced methylcholanthrene-induced fibrosarcoma growth, and a combination of murine tumor necrosis factor alpha and interferon gamma genes inhibited growth of a renal carcinoma tumor model (Renca). In addition, treatment with murine interleukin 2 and interferon gamma genes prolonged the survival of Renca tumor-bearing mice and resulted in tumor eradication in 25% of the test animals. Transgene expression was demonstrated in treated tissues by ELISA and immunohistochemical analysis. Significant serum levels of interleukin 6 and interferon gamma were detected, demonstrating effective secretion of transgenic proteins from treated skin into the bloodstream. This in vivo cytokine gene therapy approach provides a system for evaluating the antitumor properties of various cytokines in different tumor models and has potential utility for human cancer gene therapy.

Full text

PDF
2889

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asher A. L., Mulé J. J., Kasid A., Restifo N. P., Salo J. C., Reichert C. M., Jaffe G., Fendly B., Kriegler M., Rosenberg S. A. Murine tumor cells transduced with the gene for tumor necrosis factor-alpha. Evidence for paracrine immune effects of tumor necrosis factor against tumors. J Immunol. 1991 May 1;146(9):3227–3234. [PMC free article] [PubMed] [Google Scholar]
  2. Blankenstein T., Qin Z. H., Uberla K., Müller W., Rosen H., Volk H. D., Diamantstein T. Tumor suppression after tumor cell-targeted tumor necrosis factor alpha gene transfer. J Exp Med. 1991 May 1;173(5):1047–1052. doi: 10.1084/jem.173.5.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burkholder J. K., Decker J., Yang N. S. Rapid transgene expression in lymphocyte and macrophage primary cultures after particle bombardment-mediated gene transfer. J Immunol Methods. 1993 Oct 15;165(2):149–156. doi: 10.1016/0022-1759(93)90340-d. [DOI] [PubMed] [Google Scholar]
  4. Cheng L., Ziegelhoffer P. R., Yang N. S. In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by using particle bombardment. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4455–4459. doi: 10.1073/pnas.90.10.4455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cournoyer D., Caskey C. T. Gene therapy of the immune system. Annu Rev Immunol. 1993;11:297–329. doi: 10.1146/annurev.iy.11.040193.001501. [DOI] [PubMed] [Google Scholar]
  6. Farrar M. A., Schreiber R. D. The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol. 1993;11:571–611. doi: 10.1146/annurev.iy.11.040193.003035. [DOI] [PubMed] [Google Scholar]
  7. Fearon E. R., Pardoll D. M., Itaya T., Golumbek P., Levitsky H. I., Simons J. W., Karasuyama H., Vogelstein B., Frost P. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell. 1990 Feb 9;60(3):397–403. doi: 10.1016/0092-8674(90)90591-2. [DOI] [PubMed] [Google Scholar]
  8. Gansbacher B., Bannerji R., Daniels B., Zier K., Cronin K., Gilboa E. Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. Cancer Res. 1990 Dec 15;50(24):7820–7825. [PubMed] [Google Scholar]
  9. Gansbacher B., Zier K., Daniels B., Cronin K., Bannerji R., Gilboa E. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med. 1990 Oct 1;172(4):1217–1224. doi: 10.1084/jem.172.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ho S. P., Kramer K. E., Ershler W. B. Effect of host age upon interleukin-2-mediated anti-tumor responses in a murine fibrosarcoma model. Cancer Immunol Immunother. 1990;31(3):146–150. doi: 10.1007/BF01744728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kishimoto T., Akira S., Taga T. Interleukin-6 and its receptor: a paradigm for cytokines. Science. 1992 Oct 23;258(5082):593–597. doi: 10.1126/science.1411569. [DOI] [PubMed] [Google Scholar]
  12. Melhem M. F., Meisler A. I., Saito R., Finley G. G., Hockman H. R., Koski R. A. Cytokines in inflammatory malignant fibrous histiocytoma presenting with leukemoid reaction. Blood. 1993 Oct 1;82(7):2038–2044. [PubMed] [Google Scholar]
  13. Mulé J. J., Marcus S. G., Yang J. C., Weber J. S., Rosenberg S. A. Clinical application of IL6 in cancer therapy. Res Immunol. 1992 Sep;143(7):777–779. doi: 10.1016/0923-2494(92)80023-e. [DOI] [PubMed] [Google Scholar]
  14. Porgador A., Tzehoval E., Vadai E., Feldman M., Eisenbach L. Immunotherapy via gene therapy: comparison of the effects of tumor cells transduced with the interleukin-2, interleukin-6, or interferon-gamma genes. J Immunother Emphasis Tumor Immunol. 1993 Oct;14(3):191–201. [PubMed] [Google Scholar]
  15. Revel M. Growth regulatory functions of IL6 and antitumour effects. Res Immunol. 1992 Sep;143(7):769–773. doi: 10.1016/0923-2494(92)80021-c. [DOI] [PubMed] [Google Scholar]
  16. Scheid C., Young R., McDermott R., Fitzsimmons L., Scarffe J. H., Stern P. L. Immune function of patients receiving recombinant human interleukin-6 (IL-6) in a phase I clinical study: induction of C-reactive protein and IgE and inhibition of natural killer and lymphokine-activated killer cell activity. Cancer Immunol Immunother. 1994 Feb;38(2):119–126. doi: 10.1007/BF01526207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sun W. H., Kreisle R. A., Phillips A. W., Ershler W. B. In vivo and in vitro characteristics of interleukin 6-transfected B16 melanoma cells. Cancer Res. 1992 Oct 1;52(19):5412–5415. [PubMed] [Google Scholar]
  18. Swain S. L. Lymphokines and the immune response: the central role of interleukin-2. Curr Opin Immunol. 1991 Jun;3(3):304–310. doi: 10.1016/0952-7915(91)90028-y. [DOI] [PubMed] [Google Scholar]
  19. Tuttle T. M., McCrady C. W., Inge T. H., Salour M., Bear H. D. gamma-Interferon plays a key role in T-cell-induced tumor regression. Cancer Res. 1993 Feb 15;53(4):833–839. [PubMed] [Google Scholar]
  20. Watanabe Y., Kuribayashi K., Miyatake S., Nishihara K., Nakayama E., Taniyama T., Sakata T. Exogenous expression of mouse interferon gamma cDNA in mouse neuroblastoma C1300 cells results in reduced tumorigenicity by augmented anti-tumor immunity. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9456–9460. doi: 10.1073/pnas.86.23.9456. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES