Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Jan;77(1):38–41. doi: 10.1172/JCI112298

Erythrocyte glutathione synthetase deficiency leads not only to glutathione but also to glutathione-S-transferase deficiency.

E Beutler, T Gelbart, C Pegelow
PMCID: PMC423305  PMID: 3944259

Abstract

Glutathione synthetase (GSH-S) is one of the two known hereditary causes of glutathione deficiency. We describe a family whose two children have hemolytic anemia. The children's erythrocytes lack GSH and are severely deficient in GSH-S activity. No neurologic findings or 5-oxoprolinuria were present. A concurrent deficiency of glutathione-S-transferase (GST) was also detected in the erythrocytes. Residual glutathione could be detected in the erythrocytes using a sensitive cycling assay. The deficiency was found to be most severe in reticulocyte-depleted preparations. The GSH-S activity of the erythrocytes of the parents was one-half normal, while the glutathione S-transferase activity was normal. We conclude that the primary defect is one of GSH-S. Glutathione stabilizes GST in vitro, and it is assumed that the deficiency of GST in the erythrocytes of the patients is due to the instability of this enzyme in the absence of adequate intracellular GSH levels.

Full text

PDF
38

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEUTLER E., DURON O., KELLY B. M. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963 May;61:882–888. [PubMed] [Google Scholar]
  2. Beutler E. Editorial: Glutathione deficiency, pyroglutamic acidemia and amino acid transport. N Engl J Med. 1976 Aug 19;295(8):441–443. doi: 10.1056/NEJM197608192950809. [DOI] [PubMed] [Google Scholar]
  3. Beutler E., Gelbart T. Plasma glutathione in health and in patients with malignant disease. J Lab Clin Med. 1985 May;105(5):581–584. [PubMed] [Google Scholar]
  4. Beutler E. Selectivity of proteases as a basis for tissue distribution of enzymes in hereditary deficiencies. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3767–3768. doi: 10.1073/pnas.80.12.3767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boivin P., Galand C. La synthèse du glutathion au cours de l'anémie hémolytique congénitale avec déficit en glutathion réduit. Déficit congénital en glutathion-synthérase érythrocytaire? Nouv Rev Fr Hematol. 1965 Sep-Oct;5(5):707–720. [PubMed] [Google Scholar]
  6. Boivin P., Galand C., Schaison G. Déficit en glutathion-synthétase avec 5-oxoprolinurie. Deux nouveaux cas et revue de la littérature. Nouv Presse Med. 1978 May 6;7(18):1531–1535. [PubMed] [Google Scholar]
  7. Boxer L. A., Oliver J. M., Spielberg S. P., Allen J. M., Schulman J. D. Protection of granulocytes by vitamin E in glutathione synthetase deficiency. N Engl J Med. 1979 Oct 25;301(17):901–905. doi: 10.1056/NEJM197910253011702. [DOI] [PubMed] [Google Scholar]
  8. English D., Andersen B. R. Single-step separation of red blood cells. Granulocytes and mononuclear leukocytes on discontinuous density gradients of Ficoll-Hypaque. J Immunol Methods. 1974 Aug;5(3):249–252. doi: 10.1016/0022-1759(74)90109-4. [DOI] [PubMed] [Google Scholar]
  9. Hagenfeldt L., Larsson A., Zetterström R. Pyroglutamic aciduria. Studies in an infant with chronic metabolic acidosis. Acta Paediatr Scand. 1974 Jan;63(1):1–8. doi: 10.1111/j.1651-2227.1974.tb04342.x. [DOI] [PubMed] [Google Scholar]
  10. Harvey J. W., Beutler E. Binding of heme by glutathione S-transferase: a possible role of the erythrocyte enzyme. Blood. 1982 Nov;60(5):1227–1230. [PubMed] [Google Scholar]
  11. Jellum E., Kluge T., Börresen H. C., Stokke O., Eldjarn L. Pyroglutamic aciduria--a new inborn error of metabolism. Scand J Clin Lab Invest. 1970 Dec;26(4):327–335. doi: 10.3109/00365517009046241. [DOI] [PubMed] [Google Scholar]
  12. Konrad P. N., Richards F., 2nd, Valentine W. N., Paglia D. E. -Glutamyl-cysteine synthetase deficiency. A cause of hereditary hemolytic anemia. N Engl J Med. 1972 Mar 16;286(11):557–561. doi: 10.1056/NEJM197203162861101. [DOI] [PubMed] [Google Scholar]
  13. Kosower N. S., Kosower E. M., Wertheim B., Correa W. S. Diamide, a new reagent for the intracellular oxidation of glutathione to the disulfide. Biochem Biophys Res Commun. 1969 Nov 6;37(4):593–596. doi: 10.1016/0006-291x(69)90850-x. [DOI] [PubMed] [Google Scholar]
  14. Kosower N. S., Vanderhoff G. A., London I. M. The regeneration of reduced glutathione in normal and glucose-6-phosphate dehydrogenase deficient human red blood cells. Blood. 1967 Mar;29(3):313–319. [PubMed] [Google Scholar]
  15. Larsson A., Zetterström R., Hagenfeldt L., Andersson R., Dreborg S., Hörnell H. Pyroglutamic aciduria (5-oxoprolinuria), an inborn error in glutathione metabolism. Pediatr Res. 1974 Oct;8(10):852–856. doi: 10.1203/00006450-197410000-00007. [DOI] [PubMed] [Google Scholar]
  16. Minnich V., Smith M. B., Brauner M. J., Majerus P. W. Glutathione biosynthesis in human erythrocytes. I. Identification of the enzymes of glutathione synthesis in hemolysates. J Clin Invest. 1971 Mar;50(3):507–513. doi: 10.1172/JCI106519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mohler D. N., Majerus P. W., Minnich V., Hess C. E., Garrick M. D. Glutathione synthetase deficiency as a cause of hereditary hemolytic disease. N Engl J Med. 1970 Dec 3;283(23):1253–1257. doi: 10.1056/NEJM197012032832304. [DOI] [PubMed] [Google Scholar]
  18. OORT M., LOOS J. A., PRINS H. K. Hereditary absence of reduced glutathione in the erythrocytes - a new clinical and biochemical entity? (Preliminary communication). Vox Sang. 1961 May;6:370–373. doi: 10.1111/j.1423-0410.1961.tb03178.x. [DOI] [PubMed] [Google Scholar]
  19. OWENS C. W., BELCHER R. V. A COLORIMETRIC MICRO-METHOD FOR THE DETERMINATION OF GLUTATHIONE. Biochem J. 1965 Mar;94:705–711. doi: 10.1042/bj0940705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Paniker N. V., Beutler E. The effect of methylene blue and diaminodiphenysulfone on red cell reduced glutathione synthesis. J Lab Clin Med. 1972 Oct;80(4):481–487. [PubMed] [Google Scholar]
  21. Seelig G. F., Meister A. Gamma-glutamylcysteine synthetase from erythrocytes. Anal Biochem. 1984 Sep;141(2):510–514. doi: 10.1016/0003-2697(84)90079-4. [DOI] [PubMed] [Google Scholar]
  22. Spielberg S. P., Garrick M. D., Corash L. M., Butler J. D., Tietze F., Rogers L., Schulman J. D. Biochemical heterogeneity in glutathione synthetase deficiency. J Clin Invest. 1978 Jun;61(6):1417–1420. doi: 10.1172/JCI109060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Spielberg S. P., Kramer L. I., Goodman S. I., Butler J., Tietze F., Quinn P., Schulman J. D. 5-oxoprolinuria: biochemical observations and case report. J Pediatr. 1977 Aug;91(2):237–241. doi: 10.1016/s0022-3476(77)80819-6. [DOI] [PubMed] [Google Scholar]
  24. Srivastava S. K., Awasthi Y. C., Beutler E. Useful agents for the study of glutathione metabolism in erythroyctes. Organic hydroperoxides. Biochem J. 1974 May;139(2):289–295. doi: 10.1042/bj1390289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  26. Vettore L., De Matteis M. C., Zampini P. A new density gradient system for the separation of human red blood cells. Am J Hematol. 1980;8(3):291–297. doi: 10.1002/ajh.2830080307. [DOI] [PubMed] [Google Scholar]
  27. Wellner V. P., Sekura R., Meister A., Larsson A. Glutathione synthetase deficiency, an inborn error of metabolism involving the gamma-glutamyl cycle in patients with 5-oxoprolinuria (pyroglutamic aciduria). Proc Natl Acad Sci U S A. 1974 Jun;71(6):2505–2509. doi: 10.1073/pnas.71.6.2505. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES