Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Jan;77(1):142–156. doi: 10.1172/JCI112269

Nephritogenicity of antibodies to proteoglycans of the glomerular basement membrane--I.

H Makino, J T Gibbons, M K Reddy, Y S Kanwar
PMCID: PMC423320  PMID: 2935558

Abstract

We investigated nephritogenic potential of antibodies to heparan sulfate-proteoglycan of glomerular basement membrane. Glomeruli were isolated, basement membranes were prepared, proteoglycans extracted, and purified core protein was obtained. We immunized rabbits with the core protein, IgG fraction prepared from the antisera and specificity of the antibody determined. A single immunoprecipitin line in agar diffusion plate and a single band (approximately 18,000 mol wt) on the immunoblot autoradiograms were visualized. The antibody showed precise reactivity with the glomerular basement membranes. The clearance studies indicated that approximately 75% of the radioiodinated antibody disappeared from circulation within 1 h and 1-2% bound to the kidney. For nephritogenicity experiments, the antibody was intravenously administered into rats and we examined their kidneys at 1 h to 24 d later. A linear immunofluorescence of glomerular basement membranes was observed with rabbit IgG at all times while that of C3 until the 10th day. Early morphologic changes included glomerular infiltration of polymorphonuclear leukocytes with focal exfoliation of endothelium. The leukocytic infiltration subsided by the third day and was followed by progressive thickening of basement membranes, focal mesangial cell proliferation, increase in mesangial matrix, and accumulation of monocytes. Focal knob-like thickening of glomerular basement membrane was observed from the 15th day onward. Regularly-spaced electrondense deposits were seen in the lamina rara interna and externa of glomerular basement membranes and persisted throughout the investigatory period. No significant proteinuria was observed at any stage of the experiment. These findings suggest that the antibodies to the basement membrane heparan sulfate-proteoglycan are nephrotoxic but possess weak nephritogenic potential.

Full text

PDF
142

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDRES G. A., MORGAN C., HSU K. C., RIFKIND R. A., SEEGAL B. C. Electron microscopic studies of experimental nephritis with ferritin-conjugated antibody. The basement membranes and cisternae of visceral epithelial cells in nephritic rat glomeruli. J Exp Med. 1962 May 1;115:929–936. doi: 10.1084/jem.115.5.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abrahamson D. R., Caulfield J. P. Proteinuria and structural alterations in rat glomerular basement membranes induced by intravenously injected anti-laminin immunoglobulin G. J Exp Med. 1982 Jul 1;156(1):128–145. doi: 10.1084/jem.156.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alper C. A., Johnson A. M. Immunofixation electrophoresis: a technique for the study of protein polymorphism. Vox Sang. 1969 Nov;17(5):445–452. doi: 10.1111/j.1423-0410.1969.tb00414.x. [DOI] [PubMed] [Google Scholar]
  4. Brenner B. M., Hostetter T. H., Humes H. D. Molecular basis of proteinuria of glomerular origin. N Engl J Med. 1978 Apr 13;298(15):826–833. doi: 10.1056/NEJM197804132981507. [DOI] [PubMed] [Google Scholar]
  5. COCHRANE C. G., UNANUE E. R., DIXON F. J. A ROLE OF POLYMORPHONUCLEAR LEUKOCYTES AND COMPLEMENT IN NEPHROTOXIC NEPHRITIS. J Exp Med. 1965 Jul 1;122:99–116. doi: 10.1084/jem.122.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carlin B., Jaffe R., Bender B., Chung A. E. Entactin, a novel basal lamina-associated sulfated glycoprotein. J Biol Chem. 1981 May 25;256(10):5209–5214. [PubMed] [Google Scholar]
  7. Caulfield J. P., Farquhar M. G. Distribution of annionic sites in glomerular basement membranes: their possible role in filtration and attachment. Proc Natl Acad Sci U S A. 1976 May;73(5):1646–1650. doi: 10.1073/pnas.73.5.1646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FELDMAN J. D., HAMMER D., DIXON F. J. Experimental glomerulonephritis. III. Pathogenesis of glomerular ultrastructural lesions in nephrotoxic serum nephritis. Lab Invest. 1963 Jul;12:748–763. [PubMed] [Google Scholar]
  9. Gallo G. R., Caulin-Glaser T., Emancipator S. N., Lamm M. E. Nephritogenicity and differential distribution of glomerular immune complexes related to immunogen charge. Lab Invest. 1983 Mar;48(3):353–362. [PubMed] [Google Scholar]
  10. Gallo G. R., Caulin-Glaser T., Lamm M. E. Charge of circulating immune complexes as a factor in glomerular basement membrane localization in mice. J Clin Invest. 1981 May;67(5):1305–1313. doi: 10.1172/JCI110159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gang N. F., Kalant N. Nephrotoxic serum nephritis. I. Chemical, morphologic, and functional changes in the glomerular basement membrane during the evolution of nephritis. Lab Invest. 1970 Jun;22(6):531–540. [PubMed] [Google Scholar]
  12. HAMMER D. K., DIXON F. J. Experimental glomerulonephritis. II. Immunologic events in the pathogenesis of nephrotoxic serum nephritis in the rat. J Exp Med. 1963 Jun 1;117:1019–1034. doi: 10.1084/jem.117.6.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hassell J. R., Robey P. G., Barrach H. J., Wilczek J., Rennard S. I., Martin G. R. Isolation of a heparan sulfate-containing proteoglycan from basement membrane. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4494–4498. doi: 10.1073/pnas.77.8.4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hawkins D., Cochrane C. G. Glomerular basement membrane damage in immunological glomerulonephritis. Immunology. 1968 May;14(5):665–681. [PMC free article] [PubMed] [Google Scholar]
  15. KRAKOWER C. A., GREENSPON S. A. Localization of the nephrotoxic antigen within the isolated renal glomerulus. AMA Arch Pathol. 1951 Jun;51(6):629–639. [PubMed] [Google Scholar]
  16. Kanwar Y. S. Biophysiology of glomerular filtration and proteinuria. Lab Invest. 1984 Jul;51(1):7–21. [PubMed] [Google Scholar]
  17. Kanwar Y. S., Farquhar M. G. Anionic sites in the glomerular basement membrane. In vivo and in vitro localization to the laminae rarae by cationic probes. J Cell Biol. 1979 Apr;81(1):137–153. doi: 10.1083/jcb.81.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kanwar Y. S., Farquhar M. G. Isolation of glycosaminoglycans (heparan sulfate) from glomerular basement membranes. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4493–4497. doi: 10.1073/pnas.76.9.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kanwar Y. S., Farquhar M. G. Presence of heparan sulfate in the glomerular basement membrane. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1303–1307. doi: 10.1073/pnas.76.3.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kanwar Y. S., Hascall V. C., Farquhar M. G. Partial characterization of newly synthesized proteoglycans isolated from the glomerular basement membrane. J Cell Biol. 1981 Aug;90(2):527–532. doi: 10.1083/jcb.90.2.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kanwar Y. S., Jakubowski M. L., Rosenzweig L. J. Distribution of sulfated glycosaminoglycans in the glomerular basement membrane and mesangial matrix. Eur J Cell Biol. 1983 Sep;31(2):290–295. [PubMed] [Google Scholar]
  22. Kanwar Y. S., Linker A., Farquhar M. G. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol. 1980 Aug;86(2):688–693. doi: 10.1083/jcb.86.2.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kanwar Y. S., Rosenzweig L. J. Altered glomerular permeability as a result of focal detachment of the visceral epithelium. Kidney Int. 1982 Apr;21(4):565–574. doi: 10.1038/ki.1982.63. [DOI] [PubMed] [Google Scholar]
  24. Kanwar Y. S., Rosenzweig L. J. Clogging of the glomerular basement membrane. J Cell Biol. 1982 May;93(2):489–494. doi: 10.1083/jcb.93.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kanwar Y. S., Rosenzweig L. J., Linker A., Jakubowski M. L. Decreased de novo synthesis of glomerular proteoglycans in diabetes: biochemical and autoradiographic evidence. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2272–2275. doi: 10.1073/pnas.80.8.2272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kanwar Y. S., Veis A., Kimura J. H., Jakubowski M. L. Characterization of heparan sulfate-proteoglycan of glomerular basement membranes. Proc Natl Acad Sci U S A. 1984 Feb;81(3):762–766. doi: 10.1073/pnas.81.3.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kefalides N. A. Isolation of a collagen from basement membranes containing three identical - chains. Biochem Biophys Res Commun. 1971 Oct 1;45(1):226–234. doi: 10.1016/0006-291x(71)90073-8. [DOI] [PubMed] [Google Scholar]
  28. Kefalides N. A. Structure and biosynthesis of basement membranes. Int Rev Connect Tissue Res. 1973;6:63–104. doi: 10.1016/b978-0-12-363706-2.50008-8. [DOI] [PubMed] [Google Scholar]
  29. Kühn K., Ryan G. B., Hein S. J., Galaske R. G., Karnovsky M. J. An ultrastructural study of the mechanisms of proteinuria in rat nephrotoxic nephritis. Lab Invest. 1977 Apr;36(4):375–387. [PubMed] [Google Scholar]
  30. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  31. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  32. Madaio M. P., Salant D. J., Adler S., Darby C., Couser W. G. Effect of antibody charge and concentration on deposition of antibody to glomerular basement membrane. Kidney Int. 1984 Oct;26(4):397–403. doi: 10.1038/ki.1984.188. [DOI] [PubMed] [Google Scholar]
  33. Marquardt H., Wilson C. B., Dixon F. J. Isolation and immunological characterization of human glomerular basement membrane antigens. Kidney Int. 1973 Feb;3(2):57–65. doi: 10.1038/ki.1973.12. [DOI] [PubMed] [Google Scholar]
  34. Meezan E., Hjelle J. T., Brendel K., Carlson E. C. A simple, versatile, nondisruptive method for the isolation of morphologically and chemically pure basement membranes from several tissues. Life Sci. 1975 Dec 1;17(11):1721–1732. doi: 10.1016/0024-3205(75)90119-8. [DOI] [PubMed] [Google Scholar]
  35. Nicholes B. K., Krakower C. A., Greenspon S. A. The chemically isolated lamina densa of the renal glomerulus. Proc Soc Exp Biol Med. 1973 Apr;142(4):1316–1321. doi: 10.3181/00379727-142-37231. [DOI] [PubMed] [Google Scholar]
  36. OUCHTERLONY O. Diffusion-in-gel methods for immunological analysis. Prog Allergy. 1958;5:1–78. [PubMed] [Google Scholar]
  37. Oldberg A., Kjellén L., Hök M. Cell-surface heparan sulfate. Isolation and characterization of a proteoglycan from rat liver membranes. J Biol Chem. 1979 Sep 10;254(17):8505–8510. [PubMed] [Google Scholar]
  38. Reif A. E. Batch preparation of rabbit gammaG globulin with deae-cellulose. Immunochemistry. 1969 Sep;6(5):723–731. doi: 10.1016/0019-2791(67)90136-x. [DOI] [PubMed] [Google Scholar]
  39. Rennke H. G., Cotran R. S., Venkatachalam M. A. Role of molecular charge in glomerular permeability. Tracer studies with cationized ferritins. J Cell Biol. 1975 Dec;67(3):638–646. doi: 10.1083/jcb.67.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ryan G. B., Karnovsky M. J. An ultrastructural study of the mechanisms of proteinuria in aminonucleoside nephrosis. Kidney Int. 1975 Oct;8(4):219–232. doi: 10.1038/ki.1975.105. [DOI] [PubMed] [Google Scholar]
  41. Schreiner G. F., Cotran R. S., Pardo V., Unanue E. R. A mononuclear cell component in experimental immunological glomerulonephritis. J Exp Med. 1978 Feb 1;147(2):369–384. doi: 10.1084/jem.147.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shibata S., Sakaguchi H., Nagasawa T. Exfoliation of endothelial cytoplasms in nephrotoxic serum nephritis. A study using antiserum against water-soluble glycoprotein isolated from the glomerular basement membrane. Lab Invest. 1978 Feb;38(2):201–207. [PubMed] [Google Scholar]
  43. Shigematsu H., Kobayashi Y. The development and fate of the immune deposits in the glomerulus during the secondary phase of rat Masugi nephritis. Virchows Arch B Cell Pathol. 1971;8(2):83–95. doi: 10.1007/BF02893517. [DOI] [PubMed] [Google Scholar]
  44. Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
  45. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. UNANUE E. R., DIXON F. J. EXPERIMENTAL GLOMERULONEPHRITIS. V. STUDIES ON THE INTERACTION OF NEPHROTOXIC ANTIBODIES WITH TISSUE OF THE RAT. J Exp Med. 1965 May 1;121:697–714. doi: 10.1084/jem.121.5.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. UNANUE E. R., DIXON F. J. EXPERIMENTAL GLOMERULONEPHRITIS. V. STUDIES ON THE INTERACTION OF NEPHROTOXIC ANTIBODIES WITH TISSUE OF THE RAT. J Exp Med. 1965 May 1;121:697–714. doi: 10.1084/jem.121.5.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. UNANUE E. R., DIXON F. J. EXPERIMENTAL GLOMERULONEPHRITIS. VI. THE AUTOLOGOUS PHASE OF NEPHROTOXIC SERUM NEPHRITIS. J Exp Med. 1965 May 1;121:715–725. doi: 10.1084/jem.121.5.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. UNANUE E., DIXON F. J. EXPERIMENTAL GLOMERULONEPHRITIS. IV. PARTICIPATION OF COMPLEMENT IN NEPHROTOXIC NEPHRITIS. J Exp Med. 1964 Jan 1;119:965–982. doi: 10.1084/jem.119.6.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  51. Wick G., Müller P. U., Timpl R. In vivo localization and pathological effects of passively transferred antibodies to type IV collagen and laminin in mice. Clin Immunol Immunopathol. 1982 Jun;23(3):656–665. doi: 10.1016/0090-1229(82)90328-2. [DOI] [PubMed] [Google Scholar]
  52. Wilson C. B. Nephritogenic antibody mechanisms involving antigens within the glomerulus. Immunol Rev. 1981;55:257–297. doi: 10.1111/j.1600-065x.1981.tb00345.x. [DOI] [PubMed] [Google Scholar]
  53. Yaar M., Foidart J. M., Brown K. S., Rennard S. I., Martin G. R., Liotta L. The Goodpasture-like syndrome in mice induced by intravenous injections of anti-type IV collagen and anti-laminin antibody. Am J Pathol. 1982 Apr;107(1):79–91. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES