Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Jan;77(1):170–175. doi: 10.1172/JCI112272

Oxalate transport by anion exchange across rabbit ileal brush border.

R G Knickelbein, P S Aronson, J W Dobbins
PMCID: PMC423323  PMID: 3003149

Abstract

This study demonstrates the presence of oxalate transporters on the brush border membrane of rabbit ileum. We found that an inside alkaline (pH = 8.5 inside, 6.5 outside) pH gradient stimulated [14C]oxalate uptake 10-fold at 1 min with a fourfold accumulation above equilibrated uptake at 5 min. 1 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonate (disodium salt; DIDS) profoundly inhibited the pH-gradient stimulated oxalate uptake. Using an inwardly directed K+ gradient and valinomycin, we found no evidence for potential sensitive oxalate uptake. In contrast to Cl:HCO3 exchange, HCO3 did not stimulate oxalate uptake more than was seen with a pH gradient in the absence of HCO3. An outwardly directed Cl gradient (50 mM inside, 5 mM outside) stimulated oxalate uptake 10-fold at 1 min with a fivefold accumulation above equilibrated uptake. Cl-stimulated oxalate uptake was largely inhibited by DIDS. Addition of K+ and nigericin only slightly decreased the Cl gradient-stimulated oxalate uptake, which indicates that this stimulation was not primarily due to the Cl gradient generating an inside alkaline pH gradient via Cl:OH exchange. Further, an outwardly directed oxalate gradient stimulated 36Cl uptake. These results suggested that both oxalate:OH and oxalate:Cl exchange occur on the brush border membrane. To determine if one or both of these exchanges were on contaminating basolateral membrane, the vesicle preparation was further fractionated into a brush border and basolateral component using sucrose density gradient centrifugation. Both exchangers localized to the brush border component. A number of organic anions were examined (outwardly directed gradient) to determine if they could stimulate oxalate and Cl uptake. Only formate and oxaloacetate were found to stimulate oxalate and Cl uptake. An inwardly directed Na gradient only slightly stimulated oxalate uptake, which was inhibited by DIDS.

Full text

PDF
170

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson H., Jagenburg R. Fat-reduced diet in the treatment of hyperoxaluria in patients with ileopathy. Gut. 1974 May;15(5):360–366. doi: 10.1136/gut.15.5.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Binder H. J. Intestinal oxalate absorption. Gastroenterology. 1974 Sep;67(3):441–446. [PubMed] [Google Scholar]
  3. Binder H. J., Rawlins C. L. Effect of conjugated dihydroxy bile salts on electrolyte transport in rat colon. J Clin Invest. 1973 Jun;52(6):1460–1466. doi: 10.1172/JCI107320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bright-Asare P., Binder H. J. Stimulation of colonic secretion of water and electrolytes by hydroxy fatty acids. Gastroenterology. 1973 Jan;64(1):81–88. [PubMed] [Google Scholar]
  5. Caspary W. F. Intestinal oxalate absorption. I. Absorption in vitro. Res Exp Med (Berl) 1977 Aug 16;171(1):13–24. doi: 10.1007/BF01851584. [DOI] [PubMed] [Google Scholar]
  6. Chadwick V. S., Modha K., Dowling R. H. Mechanism for hyperoxaluria in patients with ileal dysfunction. N Engl J Med. 1973 Jul 26;289(4):172–176. doi: 10.1056/NEJM197307262890402. [DOI] [PubMed] [Google Scholar]
  7. Cummings J. H. Short chain fatty acids in the human colon. Gut. 1981 Sep;22(9):763–779. doi: 10.1136/gut.22.9.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dharmsathaphorn K., Freeman D. H., Binder H. J., Dobbins J. W. Increased risk of nephrolithiasis in patients with steatorrhea. Dig Dis Sci. 1982 May;27(5):401–405. doi: 10.1007/BF01295647. [DOI] [PubMed] [Google Scholar]
  9. Dobbins J. W., Binder H. J. Effect of bile salts and fatty acids on the colonic absorption of oxalate. Gastroenterology. 1976 Jun;70(6):1096–1100. [PubMed] [Google Scholar]
  10. Dobbins J. W., Binder H. J. Importance of the colon in enteric hyperoxaluria. N Engl J Med. 1977 Feb 10;296(6):298–301. doi: 10.1056/NEJM197702102960602. [DOI] [PubMed] [Google Scholar]
  11. Dobbins J. W. Nephrolithiasis and intestinal disease. J Clin Gastroenterol. 1985 Feb;7(1):21–24. doi: 10.1097/00004836-198502000-00002. [DOI] [PubMed] [Google Scholar]
  12. Erickson S. B., Cooper K., Broadus A. E., Smith L. H., Werness P. G., Binder H. J., Dobbins J. W. Oxalate absorption and postprandial urine supersaturation in an experimental human model of absorptive hypercalciuria. Clin Sci (Lond) 1984 Jul;67(1):131–138. doi: 10.1042/cs0670131. [DOI] [PubMed] [Google Scholar]
  13. Freel R. W., Hatch M., Earnest D. L., Goldner A. M. Dihydroxy bile salt-induced alterations in NaCl transport across the rabbit colon. Am J Physiol. 1983 Dec;245(6):G808–G815. doi: 10.1152/ajpgi.1983.245.6.G808. [DOI] [PubMed] [Google Scholar]
  14. Freel R. W., Hatch M., Earnest D. L., Goldner A. M. Oxalate transport across the isolated rat colon. A re-examination. Biochim Biophys Acta. 1980 Aug 14;600(3):838–843. doi: 10.1016/0005-2736(80)90486-1. [DOI] [PubMed] [Google Scholar]
  15. Freel R. W., Hatch M., Earnest D. L., Goldner A. M. Role of tight-junctional pathways in bile salt-induced increases in colonic permeability. Am J Physiol. 1983 Dec;245(6):G816–G823. doi: 10.1152/ajpgi.1983.245.6.G816. [DOI] [PubMed] [Google Scholar]
  16. Hatch M., Freel R. W., Goldner A. M., Earnest D. L. Oxalate and chloride absorption by the rabbit colon: sensitivity to metabolic and anion transport inhibitors. Gut. 1984 Mar;25(3):232–237. doi: 10.1136/gut.25.3.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hylander E., Jarnum S., Jensen H. J., Thale M. Enteric hyperoxaluria: dependence on small intestinal resection, colectomy, and steatorrhoea in chronic inflammatory bowel disease. Scand J Gastroenterol. 1978;13(5):577–588. doi: 10.3109/00365527809181767. [DOI] [PubMed] [Google Scholar]
  18. Karniski L. P., Aronson P. S. Chloride/formate exchange with formic acid recycling: a mechanism of active chloride transport across epithelial membranes. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6362–6365. doi: 10.1073/pnas.82.18.6362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kathpalia S. C., Favus M. J., Coe F. L. Evidence for size and charge permselectivity of rat ascending colon. Effects of ricinoleate and bile salts on oxalic acid and neutral sugar transport. J Clin Invest. 1984 Sep;74(3):805–811. doi: 10.1172/JCI111496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Knickelbein R., Aronson P. S., Atherton W., Dobbins J. W. Sodium and chloride transport across rabbit ileal brush border. I. Evidence for Na-H exchange. Am J Physiol. 1983 Oct;245(4):G504–G510. doi: 10.1152/ajpgi.1983.245.4.G504. [DOI] [PubMed] [Google Scholar]
  21. Knickelbein R., Aronson P. S., Schron C. M., Seifter J., Dobbins J. W. Sodium and chloride transport across rabbit ileal brush border. II. Evidence for Cl-HCO3 exchange and mechanism of coupling. Am J Physiol. 1985 Aug;249(2 Pt 1):G236–G245. doi: 10.1152/ajpgi.1985.249.2.G236. [DOI] [PubMed] [Google Scholar]
  22. Marangella M., Fruttero B., Bruno M., Linari F. Hyperoxaluria in idiopathic calcium stone disease: further evidence of intestinal hyperabsorption of oxalate. Clin Sci (Lond) 1982 Oct;63(4):381–385. doi: 10.1042/cs0630381. [DOI] [PubMed] [Google Scholar]
  23. Racusen L. C., Binder H. J. Ricinoleic acid stimulation of active anion secretion in colonic mucosa of the rat. J Clin Invest. 1979 Apr;63(4):743–749. doi: 10.1172/JCI109358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Saunders D. R., Sillery J., McDonald G. B. Regional differences in oxalate absorption by rat intestine: evidence for excessive absorption by the colon in steatorrhoea. Gut. 1975 Jul;16(7):543–548. doi: 10.1136/gut.16.7.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schwartz S. E., Stauffer J. Q., Burgess L. W., Cheney M. Oxalate uptake by everted sacs of rat colon. Regional differences and the effects of pH and ricinoleic acid. Biochim Biophys Acta. 1980 Mar 13;596(3):404–413. doi: 10.1016/0005-2736(80)90127-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES