Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Jan;77(1):212–221. doi: 10.1172/JCI112279

Glucoregulation during exercise: hypoglycemia is prevented by redundant glucoregulatory systems, sympathochromaffin activation, and changes in islet hormone secretion.

D R Hoelzer, G P Dalsky, W E Clutter, S D Shah, J O Holloszy, P E Cryer
PMCID: PMC423329  PMID: 3511090

Abstract

During mild or moderate nonexhausting exercise, glucose utilization increases sharply but is normally matched by increased glucose production such that hypoglycemia does not occur. To test the hypothesis that redundant glucoregulatory systems including sympathochromaffin activation and changes in pancreatic islet hormone secretion underlie this precise matching, eight young adults exercised at 55-60% of maximal oxygen consumption for 60 min on separate occasions under four conditions: (a) control study (saline infusion); (b) islet clamp study (insulin and glucagon held constant by somatostatin infusion with glucagon and insulin replacement at fixed rates before, during and after exercise with insulin doses determined individually and shown to produce normal and stable plasma glucose concentrations prior to each study); (c) adrenergic blockage study (infusions of the alpha- and beta-adrenergic antagonists phentolamine and propranolol); (d) adrenergic blockade plus islet clamp study. Glucose production matched increased glucose utilization during exercise in the control study and plasma glucose did not fall (92 +/- 1 mg/dl at base line, 90 +/- 2 mg/dl at the end of exercise). Plasma glucose also did not fall during exercise when changes in insulin and glucagon were prevented in the islet clamp study. In the adrenergic blockade study, plasma glucose declined initially during exercise because of a greater initial increase in glucose utilization, then plateaued with an end-exercise value of 74 +/- 3 mg/dl (P less than 0.01 vs. control). In contrast, in the adrenergic blockade plus islet clamp study, exercise was associated with glucose production substantially lower than control and plasma glucose fell progressively to 58 +/- 7 mg/dl (P less than 0.001); end-exercise plasma glucose concentrations ranged from 34 to 72 mg/dl. Thus, we conclude that: (a) redundant glucoregulatory systems are involved in the precise matching of increased glucose utilization and glucose production that normally prevents hypoglycemia during moderate exercise in humans. (b) Sympathochromaffin activation, perhaps sympathetic neural norepinephrine release, plays a primary glucoregulatory role by limiting glucose utilization as well as stimulating glucose production. (c) Changes in pancreatic islet hormone secretion (decrements in insulin, increments in glucagon, or both) are not normally critical but become critical when catecholamine action is deficient. (d) Glucoregulation fails, and hypoglycemia can develop, both when catecholamine action is deficient and when changes in islet hormones do not occur during exercise in humans.

Full text

PDF
212

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berk M. A., Clutter W. E., Skor D., Shah S. D., Gingerich R. P., Parvin C. A., Cryer P. E. Enhanced glycemic responsiveness to epinephrine in insulin-dependent diabetes mellitus is the result of the inability to secrete insulin. Augmented insulin secretion normally limits the glycemic, but not the lipolytic or ketogenic, response to epinephrine in humans. J Clin Invest. 1985 Jun;75(6):1842–1851. doi: 10.1172/JCI111898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berk M. A., Clutter W. E., Skor D., Shah S. D., Gingerich R. P., Parvin C. A., Cryer P. E. Enhanced glycemic responsiveness to epinephrine in insulin-dependent diabetes mellitus is the result of the inability to secrete insulin. Augmented insulin secretion normally limits the glycemic, but not the lipolytic or ketogenic, response to epinephrine in humans. J Clin Invest. 1985 Jun;75(6):1842–1851. doi: 10.1172/JCI111898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brockman R. P. Effect of adrenal denervation on the glucose, insulin, and glucagon responses to exercise in sheep. Can J Physiol Pharmacol. 1982 Dec;60(12):1459–1463. doi: 10.1139/y82-216. [DOI] [PubMed] [Google Scholar]
  4. Cahill G. F., Jr, Herrera M. G., Morgan A. P., Soeldner J. S., Steinke J., Levy P. L., Reichard G. A., Jr, Kipnis D. M. Hormone-fuel interrelationships during fasting. J Clin Invest. 1966 Nov;45(11):1751–1769. doi: 10.1172/JCI105481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cherrington A. D., Caldwell M. D., Dietz M. R., Exton J. H., Crofford O. B. The effect of somatostatin on glucose uptake and production by rat tissues in vitro. Diabetes. 1977 Aug;26(8):740–748. doi: 10.2337/diab.26.8.740. [DOI] [PubMed] [Google Scholar]
  6. Cherrington A. D., Chiasson J. L., Liljenquist J. E., Lacy W. W., Park C. R. Control of hepatic glucose output by glucagon and insulin in the intact dog. Biochem Soc Symp. 1978;(43):31–45. [PubMed] [Google Scholar]
  7. Cherrington A. D., Fuchs H., Stevenson R. W., Williams P. E., Alberti K. G., Steiner K. E. Effect of epinephrine on glycogenolysis and gluconeogenesis in conscious overnight-fasted dogs. Am J Physiol. 1984 Aug;247(2 Pt 1):E137–E144. doi: 10.1152/ajpendo.1984.247.2.E137. [DOI] [PubMed] [Google Scholar]
  8. Cherrington A. D., Lacy W. W., Williams P. E., Steiner K. E. Failure of somatostatin to modify effect of glucagon on carbohydrate metabolism in the dog. Am J Physiol. 1983 Jun;244(6):E596–E602. doi: 10.1152/ajpendo.1983.244.6.E596. [DOI] [PubMed] [Google Scholar]
  9. Chiasson J. L., Shikama H., Chu D. T., Exton J. H. Inhibitory effect of epinephrine on insulin-stimulated glucose uptake by rat skeletal muscle. J Clin Invest. 1981 Sep;68(3):706–713. doi: 10.1172/JCI110306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chisholm D. J., Jenkins A. B., James D. E., Kraegen E. W. The effect of hyperinsulinemia on glucose homeostasis during moderate exercise in man. Diabetes. 1982 Jul;31(7):603–608. doi: 10.2337/diab.31.7.603. [DOI] [PubMed] [Google Scholar]
  11. Christensen N. J., Galbo H. Sympathetic nervous activity during exercise. Annu Rev Physiol. 1983;45:139–153. doi: 10.1146/annurev.ph.45.030183.001035. [DOI] [PubMed] [Google Scholar]
  12. Clarke W. L., Santiago J. V., Thomas L., Ben-Galim E., Haymond M. W., Cryer P. E. Adrenergic mechanisms in recovery from hypoglycemia in man: adrenergic blockade. Am J Physiol. 1979 Feb;236(2):E147–E152. doi: 10.1152/ajpendo.1979.236.2.E147. [DOI] [PubMed] [Google Scholar]
  13. Clutter W. E., Bier D. M., Shah S. D., Cryer P. E. Epinephrine plasma metabolic clearance rates and physiologic thresholds for metabolic and hemodynamic actions in man. J Clin Invest. 1980 Jul;66(1):94–101. doi: 10.1172/JCI109840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cryer P. E. Does central nervous system adaptation to antecedent glycemia occur in patients with insulin-dependent diabetes mellitus? Ann Intern Med. 1985 Aug;103(2):284–286. doi: 10.7326/0003-4819-103-2-284. [DOI] [PubMed] [Google Scholar]
  15. Cryer P. E., Gerich J. E. Glucose counterregulation, hypoglycemia, and intensive insulin therapy in diabetes mellitus. N Engl J Med. 1985 Jul 25;313(4):232–241. doi: 10.1056/NEJM198507253130405. [DOI] [PubMed] [Google Scholar]
  16. Cryer P. E. Glucose counterregulation in man. Diabetes. 1981 Mar;30(3):261–264. doi: 10.2337/diab.30.3.261. [DOI] [PubMed] [Google Scholar]
  17. Cryer P. E., Haymond M. W., Santiago J. V., Shah S. D. Norepinephrine and epinephrine release and adrenergic mediation of smoking-associated hemodynamic and metabolic events. N Engl J Med. 1976 Sep 9;295(11):573–577. doi: 10.1056/NEJM197609092951101. [DOI] [PubMed] [Google Scholar]
  18. Cryer P. E., Rizza R. A., Haymond M. W., Gerich J. E. Epinephrine and norepinephrine are cleared through beta-adrenergic, but not alpha-adrenergic, mechanisms in man. Metabolism. 1980 Nov;29(11 Suppl 1):1114–1118. doi: 10.1016/0026-0495(80)90019-0. [DOI] [PubMed] [Google Scholar]
  19. Cryer P. E., Santiago J. V., Shah S. Measurement of norepinephrine and epinephrine in small volumes of human plasma by a single isotope derivative method: response to the upright posture. J Clin Endocrinol Metab. 1974 Dec;39(6):1025–1029. doi: 10.1210/jcem-39-6-1025. [DOI] [PubMed] [Google Scholar]
  20. Cryer P. E., Tse T. F., Clutter W. E., Shah S. D. Roles of glucagon and epinephrine in hypoglycemic and nonhypoglycemic glucose counterregulation in humans. Am J Physiol. 1984 Aug;247(2 Pt 1):E198–E205. doi: 10.1152/ajpendo.1984.247.2.E198. [DOI] [PubMed] [Google Scholar]
  21. DeFronzo R. A., Tobin J. D., Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979 Sep;237(3):E214–E223. doi: 10.1152/ajpendo.1979.237.3.E214. [DOI] [PubMed] [Google Scholar]
  22. Deibert D. C., DeFronzo R. A. Epinephrine-induced insulin resistance in man. J Clin Invest. 1980 Mar;65(3):717–721. doi: 10.1172/JCI109718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Edwards A. V. The glycogenolytic response to stimulation of the splanchnic nerves in adrenalectomized calves, sheep, dogs, cats and pigs. J Physiol. 1971 Mar;213(3):741–759. doi: 10.1113/jphysiol.1971.sp009412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Edwards A. V. The sensitivity of the hepatic glycogenolytic mechanism ot stimulation of the splanchnic nerves. J Physiol. 1972 Jan;220(2):315–334. doi: 10.1113/jphysiol.1972.sp009709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ehsani A. A., Heath G. W., Hagberg J. M., Sobel B. E., Holloszy J. O. Effects of 12 months of intense exercise training on ischemic ST-segment depression in patients with coronary artery disease. Circulation. 1981 Dec;64(6):1116–1124. doi: 10.1161/01.cir.64.6.1116. [DOI] [PubMed] [Google Scholar]
  26. Farmer R. W., Pierce C. E. Plasma cortisol determination: radioimmunoassay and competitive protein binding compared. Clin Chem. 1974 Apr;20(4):411–414. [PubMed] [Google Scholar]
  27. Felig P., Cherif A., Minagawa A., Wahren J. Hypoglycemia during prolonged exercise in normal men. N Engl J Med. 1982 Apr 15;306(15):895–900. doi: 10.1056/NEJM198204153061503. [DOI] [PubMed] [Google Scholar]
  28. Felig P., Wahren J. Role of insulin and glucagon in the regulation of hepatic glucose production during exercise. Diabetes. 1979 Jan;28 (Suppl 1):71–75. doi: 10.2337/diab.28.1.s71. [DOI] [PubMed] [Google Scholar]
  29. Galbo H., Christensen N. J., Holst J. J. Catecholamines and pancreatic hormones during autonomic blockade in exercising man. Acta Physiol Scand. 1977 Dec;101(4):428–437. doi: 10.1111/j.1748-1716.1977.tb06026.x. [DOI] [PubMed] [Google Scholar]
  30. Galbo H., Holst J. J., Christensen N. J., Hilsted J. Glucagon and plasma catecholamines during beta-receptor blockade in exercising man. J Appl Physiol. 1976 Jun;40(6):855–863. doi: 10.1152/jappl.1976.40.6.855. [DOI] [PubMed] [Google Scholar]
  31. Garber A. J., Cryer P. E., Santiago J. V., Haymond M. W., Pagliara A. S., Kipnis D. M. The role of adrenergic mechanisms in the substrate and hormonal response to insulin-induced hypoglycemia in man. J Clin Invest. 1976 Jul;58(1):7–15. doi: 10.1172/JCI108460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Garceau D., Yamaguchi N., Goyer R., Guitard F. Correlation between endogenous noradrenaline and glucose released from the liver upon hepatic sympathetic nerve stimulation in anesthetized dogs. Can J Physiol Pharmacol. 1984 Sep;62(9):1086–1091. doi: 10.1139/y84-181. [DOI] [PubMed] [Google Scholar]
  33. Gerich J., Davis J., Lorenzi M., Rizza R., Bohannon N., Karam J., Lewis S., Kaplan R., Schultz T., Cryer P. Hormonal mechanisms of recovery from insulin-induced hypoglycemia in man. Am J Physiol. 1979 Apr;236(4):E380–E385. doi: 10.1152/ajpendo.1979.236.4.E380. [DOI] [PubMed] [Google Scholar]
  34. Gottesman I. S., Mandarino L. J., Gerich J. E. Somatostatin: its role in health and disease. Spec Top Endocrinol Metab. 1982;4:177–243. [PubMed] [Google Scholar]
  35. HALES C. N., RANDLE P. J. Immunoassay of insulin with insulin-antibody precipitate. Biochem J. 1963 Jul;88:137–146. doi: 10.1042/bj0880137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Hartmann H., Beckh K., Jungermann K. Direct control of glycogen metabolism in the perfused rat liver by the sympathetic innervation. Eur J Biochem. 1982 Apr;123(3):521–526. doi: 10.1111/j.1432-1033.1982.tb06562.x. [DOI] [PubMed] [Google Scholar]
  37. Jaspan J. B., Ruddick J., Rayfield E. Transhepatic glucagon gradients in man: evidence for glucagon extraction by human liver. J Clin Endocrinol Metab. 1984 Feb;58(2):287–292. doi: 10.1210/jcem-58-2-287. [DOI] [PubMed] [Google Scholar]
  38. Juhlin-Dannfelt A. beta-Adrenoceptor blockade and exercise: effects on endurance and physical training. Acta Med Scand Suppl. 1983;672:49–54. doi: 10.1111/j.0954-6820.1983.tb01613.x. [DOI] [PubMed] [Google Scholar]
  39. Järhult J., Andersson P. O., Holst J., Moghimzadeh E., Nobin A. On the sympathetic innervation to the cat's liver and its role for hepatic glucose release. Acta Physiol Scand. 1980 Sep;110(1):5–11. doi: 10.1111/j.1748-1716.1980.tb06623.x. [DOI] [PubMed] [Google Scholar]
  40. Järhult J., Holst J. The role of the adrenergic innervation to the pancreatic islets in the control of insulin release during exercise in man. Pflugers Arch. 1979 Dec;383(1):41–45. doi: 10.1007/BF00584473. [DOI] [PubMed] [Google Scholar]
  41. Kuzuya H., Blix P. M., Horwitz D. L., Steiner D. F., Rubenstein A. H. Determination of free and total insulin and C-peptide in insulin-treated diabetics. Diabetes. 1977 Jan;26(1):22–29. doi: 10.2337/diab.26.1.22. [DOI] [PubMed] [Google Scholar]
  42. LOWRY O. H., PASSONNEAU J. V., HASSELBERGER F. X., SCHULZ D. W. EFFECT OF ISCHEMIA ON KNOWN SUBSTRATES AND COFACTORS OF THE GLYCOLYTIC PATHWAY IN BRAIN. J Biol Chem. 1964 Jan;239:18–30. [PubMed] [Google Scholar]
  43. Lautt W. W. Afferent and efferent neural roles in liver function. Prog Neurobiol. 1983;21(4):323–348. doi: 10.1016/0301-0082(83)90016-3. [DOI] [PubMed] [Google Scholar]
  44. MacGorman L. R., Rizza R. A., Gerich J. E. Physiological concentrations of growth hormone exert insulin-like and insulin antagonistic effects on both hepatic and extrahepatic tissues in man. J Clin Endocrinol Metab. 1981 Sep;53(3):556–559. doi: 10.1210/jcem-53-3-556. [DOI] [PubMed] [Google Scholar]
  45. Martin M. J., Robbins D. C., Bergenstal R., LaGrange B., Rubenstein A. H. Absence of exercise-induced hypoglycaemia in type i (insulin-dependent) diabetic patients during maintenance of normoglycaemia by short-term, open-loop insulin infusion. Diabetologia. 1982 Oct;23(4):336–342. doi: 10.1007/BF00253741. [DOI] [PubMed] [Google Scholar]
  46. NOVAK M. COLORIMETRIC ULTRAMICRO METHOD FOR THE DETERMINATION OF FREE FATTY ACIDS. J Lipid Res. 1965 Jul;6:431–433. [PubMed] [Google Scholar]
  47. Nobin A., Falck B., Ingemansson S., Järhult J., Rosengren E. Organization and function of the sympathetic innervation. Acta Physiol Scand Suppl. 1977;452:103–106. [PubMed] [Google Scholar]
  48. Pinter J. K., Hayashi J. A., Watson J. A. Enzymic assay of glycerol, dihydroxyacetone, and glyceraldehyde. Arch Biochem Biophys. 1967 Aug;121(2):404–414. doi: 10.1016/0003-9861(67)90094-x. [DOI] [PubMed] [Google Scholar]
  49. Popp D. A., Shah S. D., Cryer P. E. Role of epinephrine-mediated beta-adrenergic mechanisms in hypoglycemic glucose counterregulation and posthypoglycemic hyperglycemia in insulin-dependent diabetes mellitus. J Clin Invest. 1982 Feb;69(2):315–326. doi: 10.1172/JCI110455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Péronnet F., Nadeau R., de Champlain J., Imbach A. Plasma catecholamines and response to exercise in 6-hydroxydopamine-treated dogs. Can J Physiol Pharmacol. 1982 Sep;60(9):1219–1224. doi: 10.1139/y82-176. [DOI] [PubMed] [Google Scholar]
  51. Richter E. A., Galbo H., Sonne B., Holst J. J., Christensen N. J. Adrenal medullary control of muscular and hepatic glycogenolysis and of pancreatic hormonal secretion in exercising rats. Acta Physiol Scand. 1980 Mar;108(3):235–242. doi: 10.1111/j.1748-1716.1980.tb06528.x. [DOI] [PubMed] [Google Scholar]
  52. Richter E. A., Ruderman N. B., Schneider S. H. Diabetes and exercise. Am J Med. 1981 Jan;70(1):201–209. doi: 10.1016/0002-9343(81)90427-7. [DOI] [PubMed] [Google Scholar]
  53. Richter E. A., Sonne B., Christensen N. J., Galbo H. Role of epinephrine for muscular glycogenolysis and pancreatic hormonal secretion in running rats. Am J Physiol. 1981 May;240(5):E526–E532. doi: 10.1152/ajpendo.1981.240.5.E526. [DOI] [PubMed] [Google Scholar]
  54. Rizza R. A., Cryer P. E., Gerich J. E. Role of glucagon, catecholamines, and growth hormone in human glucose counterregulation. Effects of somatostatin and combined alpha- and beta-adrenergic blockade on plasma glucose recovery and glucose flux rates after insulin-induced hypoglycemia. J Clin Invest. 1979 Jul;64(1):62–71. doi: 10.1172/JCI109464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Rizza R. A., Cryer P. E., Haymond M. W., Gerich J. E. Adrenergic mechanisms for the effects of epinephrine on glucose production and clearance in man. J Clin Invest. 1980 Mar;65(3):682–689. doi: 10.1172/JCI109714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Rizza R., Haymond M., Cryer P., Gerich J. Differential effects of epinephrine on glucose production and disposal in man. Am J Physiol. 1979 Oct;237(4):E356–E362. doi: 10.1152/ajpendo.1979.237.4.E356. [DOI] [PubMed] [Google Scholar]
  57. Rosen S. G., Clutter W. E., Berk M. A., Shah S. D., Cryer P. E. Epinephrine supports the postabsorptive plasma glucose concentration and prevents hypoglycemia when glucagon secretion is deficient in man. J Clin Invest. 1984 Feb;73(2):405–411. doi: 10.1172/JCI111226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. SCHALCH D. S., PARKER M. L. A SENSITIVE DOUBLE ANTIBODY IMMUNOASSAY FOR HUMAN GROWTH HORMONE IN PLASMA. Nature. 1964 Sep 12;203:1141–1142. doi: 10.1038/2031141a0. [DOI] [PubMed] [Google Scholar]
  59. Silverberg A. B., Shah S. D., Haymond M. W., Cryer P. E. Norepinephrine: hormone and neurotransmitter in man. Am J Physiol. 1978 Mar;234(3):E252–E256. doi: 10.1152/ajpendo.1978.234.3.E252. [DOI] [PubMed] [Google Scholar]
  60. Simonson D. C., Koivisto V., Sherwin R. S., Ferrannini E., Hendler R., Juhlin-Dannfelt A., DeFronzo R. A. Adrenergic blockade alters glucose kinetics during exercise in insulin-dependent diabetics. J Clin Invest. 1984 Jun;73(6):1648–1658. doi: 10.1172/JCI111371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Stevenson R. W., Steiner K. E., Green D. R., Cherrington A. D. Lack of effect of somatostatin on the stimulation of hepatic glycogenolysis by epinephrine in isolated canine hepatocytes. Biochim Biophys Acta. 1984 Aug 17;804(4):414–418. doi: 10.1016/0167-4889(84)90068-5. [DOI] [PubMed] [Google Scholar]
  62. Tse T. F., Clutter W. E., Shah S. D., Cryer P. E. Mechanisms of postprandial glucose counterregulation in man. Physiologic roles of glucagon and epinephrine vis-a-vis insulin in the prevention of hypoglycemia late after glucose ingestion. J Clin Invest. 1983 Jul;72(1):278–286. doi: 10.1172/JCI110967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Tse T. F., Clutter W. E., Shah S. D., Cryer P. E. Mechanisms of postprandial glucose counterregulation in man. Physiologic roles of glucagon and epinephrine vis-a-vis insulin in the prevention of hypoglycemia late after glucose ingestion. J Clin Invest. 1983 Jul;72(1):278–286. doi: 10.1172/JCI110967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Tse T. F., Clutter W. E., Shah S. D., Miller J. P., Cryer P. E. Neuroendocrine responses to glucose ingestion in man. Specificity, temporal relationships, and quantitative aspects. J Clin Invest. 1983 Jul;72(1):270–277. doi: 10.1172/JCI110966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Valverde I., Dobbs R., Unger R. H. Heterogeneity of plasma glucagon immunoreactivity in normal, depancreatized, and alloxan-diabetic dogs. Metabolism. 1975 Sep;24(9):1021–1028. doi: 10.1016/0026-0495(75)90095-5. [DOI] [PubMed] [Google Scholar]
  66. Wahren J., Felig P., Hagenfeldt L. Physical exercise and fuel homeostasis in diabetes mellitus. Diabetologia. 1978 Apr;14(4):213–222. doi: 10.1007/BF01219419. [DOI] [PubMed] [Google Scholar]
  67. Walter R. M., Jr, Gold E. M., Michas C. A., Ensinck J. W. Portal and peripheral vein concentrations of insulin and glucagon after arginine infusion in morbidly obese subjects. Metabolism. 1980 Oct;29(11):1037–1040. doi: 10.1016/0026-0495(80)90213-9. [DOI] [PubMed] [Google Scholar]
  68. Wasserman D. H., Lickley H. L., Vranic M. Interactions between glucagon and other counterregulatory hormones during normoglycemic and hypoglycemic exercise in dogs. J Clin Invest. 1984 Oct;74(4):1404–1413. doi: 10.1172/JCI111551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. White N. H., Skor D. A., Cryer P. E., Levandoski L. A., Bier D. M., Santiago J. V. Identification of type I diabetic patients at increased risk for hypoglycemia during intensive therapy. N Engl J Med. 1983 Mar 3;308(9):485–491. doi: 10.1056/NEJM198303033080903. [DOI] [PubMed] [Google Scholar]
  70. Zinman B., Marliss E. B., Hanna A. K., Minuk H. L., Vranic M. Exercise in diabetic man: glucose turnover and free insulin responses after glycemic normalization with intravenous insulin. Can J Physiol Pharmacol. 1982 Oct;60(10):1236–1240. doi: 10.1139/y82-180. [DOI] [PubMed] [Google Scholar]
  71. Zinman B., Murray F. T., Vranic M., Albisser A. M., Leibel B. S., Mc Clean P. A., Marliss E. B. Glucoregulation during moderate exercise in insulin treated diabetics. J Clin Endocrinol Metab. 1977 Oct;45(4):641–652. doi: 10.1210/jcem-45-4-641. [DOI] [PubMed] [Google Scholar]
  72. von Schenck H., Grubb A. O. Interference of immunoglobulins in two glucagon radioimmunoassays. Clin Chem. 1982 May;28(5):1103–1107. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES