Abstract
Morphologic and functional abnormalities of vascular endothelium are well recognized in diabetes. In view of our previous finding that high glucose concentrations accelerate death and hamper replication of cultured human endothelial cells, we have investigated in the same model the possibility that exposure to high glucose may result in DNA damage. DNA from human endothelial cells--but not from fibroblasts--exposed to 30 mM glucose for 9-14 d manifested an accelerated rate of unwinding in alkali indicative of an increased number of single strand breaks (P less than 0.001 vs. control). Endothelial cells exposed to high glucose also manifested an increased amount of hydroxy-urea-resistant thymidine incorporation (333 +/- 153 cpm/10(5) cells vs. 88 +/- 42 in control cells, mean +/- SD, P = 0.04), which is indicative of increased DNA repair synthesis. Neither DNA damage nor repair synthesis were increased by medium hypertonicity achieved with 30 mM mannitol. These findings suggest the possibility that, under conditions of high ambient glucose, excess glucose entry in cells that are insulin independent for glucose transport may, directly or indirectly, perturb DNA function. Further, they suggest the possibility that different individual capabilities to repair DNA damage--a process that is under genetic control--may represent a mechanism for different individual susceptibilities to development of diabetic vascular complication.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berhanu P., Olefsky J. M. Effects of insulin and insulin-like agents on the glucose transport system of cultured human fibroblasts. Diabetes. 1981 Jun;30(6):523–529. doi: 10.2337/diab.30.6.523. [DOI] [PubMed] [Google Scholar]
- Betz A. L., Bowman P. D., Goldstein G. W. Hexose transport in microvascular endothelial cells cultured from bovine retina. Exp Eye Res. 1983 Feb;36(2):269–277. doi: 10.1016/0014-4835(83)90011-8. [DOI] [PubMed] [Google Scholar]
- Birnboim H. C., Jevcak J. J. Fluorometric method for rapid detection of DNA strand breaks in human white blood cells produced by low doses of radiation. Cancer Res. 1981 May;41(5):1889–1892. [PubMed] [Google Scholar]
- Brandt W. N., Flamm W. G., Bernheim N. J. The value of hydroxyurea in assessing repair synthesis of DNA in HeLa cells. Chem Biol Interact. 1972 Oct;5(5):327–339. doi: 10.1016/0009-2797(72)90072-5. [DOI] [PubMed] [Google Scholar]
- Bucala R., Model P., Cerami A. Modification of DNA by reducing sugars: a possible mechanism for nucleic acid aging and age-related dysfunction in gene expression. Proc Natl Acad Sci U S A. 1984 Jan;81(1):105–109. doi: 10.1073/pnas.81.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chazan B. I., Balodimos M. C., Ryan J. R., Marble A. Twenty-five to forty-five years of diabetes with and without vascular complications. Diabetologia. 1970 Dec;6(6):565–569. doi: 10.1007/BF00418222. [DOI] [PubMed] [Google Scholar]
- Clements R. S., Jr Diabetic neuropathy--new concepts of its etiology. Diabetes. 1979 Jun;28(6):604–611. doi: 10.2337/diab.28.6.604. [DOI] [PubMed] [Google Scholar]
- Corkey R. F., Corkey B. E., Gimbrone M. A., Jr Hexose transport in normal and SV40-transformed human endothelial cells in culture. J Cell Physiol. 1981 Mar;106(3):425–434. doi: 10.1002/jcp.1041060312. [DOI] [PubMed] [Google Scholar]
- Dolgov V. V., Zaikina O. E., Bondarenko M. F., Repin V. S. Aortic endothelium of alloxan diabetic rabbits: a quantitative study using scanning electron microscopy. Diabetologia. 1982 May;22(5):338–343. doi: 10.1007/BF00253578. [DOI] [PubMed] [Google Scholar]
- Dornan T. L., Ting A., McPherson C. K., Peckar C. O., Mann J. I., Turner R. C., Morris P. J. Genetic susceptibility to the development of retinopathy in insulin-dependent diabetics. Diabetes. 1982 Mar;31(3):226–231. doi: 10.2337/diab.31.3.226. [DOI] [PubMed] [Google Scholar]
- Ganda O. P. Pathogenesis of macrovascular disease in the human diabetic. Diabetes. 1980 Nov;29(11):931–942. doi: 10.2337/diab.29.11.931. [DOI] [PubMed] [Google Scholar]
- Howard B. V., Mott D. M., Fields R. M., Bennett P. H. Insulin stimulation of glucose entry in cultured human fibroblasts. J Cell Physiol. 1979 Oct;101(1):129–138. doi: 10.1002/jcp.1041010115. [DOI] [PubMed] [Google Scholar]
- Kohn K. W., Friedman C. A., Ewig R. A., Iqbal Z. M. DNA chain growth during replication of asynchronous L1210 cells. Alkaline elution of large DNA segments from cells lysed on filters. Biochemistry. 1974 Sep 24;13(20):4134–4139. doi: 10.1021/bi00717a011. [DOI] [PubMed] [Google Scholar]
- Lindberg U., Skoog L. A method for the determination of dATP and dTTP in picomole amounts. Anal Biochem. 1970 Mar;34:152–160. doi: 10.1016/0003-2697(70)90096-5. [DOI] [PubMed] [Google Scholar]
- Lorenzi M., Cagliero E., Toledo S. Glucose toxicity for human endothelial cells in culture. Delayed replication, disturbed cell cycle, and accelerated death. Diabetes. 1985 Jul;34(7):621–627. doi: 10.2337/diab.34.7.621. [DOI] [PubMed] [Google Scholar]
- Mills J. L., Baker L., Goldman A. S. Malformations in infants of diabetic mothers occur before the seventh gestational week. Implications for treatment. Diabetes. 1979 Apr;28(4):292–293. doi: 10.2337/diab.28.4.292. [DOI] [PubMed] [Google Scholar]
- Morita J., Ueda K., Nanjo S., Komano T. Sequence specific damage of DNA induced by reducing sugars. Nucleic Acids Res. 1985 Jan 25;13(2):449–458. doi: 10.1093/nar/13.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parthasarathy N., Spiro R. G. Effect of diabetes on the glycosaminoglycan component of the human glomerular basement membrane. Diabetes. 1982 Aug;31(8 Pt 1):738–741. doi: 10.2337/diab.31.8.738. [DOI] [PubMed] [Google Scholar]
- Parving H. H. Increased microvascular permeability to plasma proteins in short- and long-term juvenile diabetics. Diabetes. 1976;25(2 Suppl):884–889. [PubMed] [Google Scholar]
- Seto S., Carrera C. J., Kubota M., Wasson D. B., Carson D. A. Mechanism of deoxyadenosine and 2-chlorodeoxyadenosine toxicity to nondividing human lymphocytes. J Clin Invest. 1985 Feb;75(2):377–383. doi: 10.1172/JCI111710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheridan R. B., 3rd, Huang P. C. Single strand breakage and repair in eukaryotic DNA as assayed by S1 nuclease. Nucleic Acids Res. 1977 Feb;4(2):299–318. doi: 10.1093/nar/4.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh N., Poirier G., Cerutti P. Tumor promoter phorbol-12-myristate-13-acetate induces poly ADP-ribosylation in human monocytes. Biochem Biophys Res Commun. 1985 Feb 15;126(3):1208–1214. doi: 10.1016/0006-291x(85)90314-6. [DOI] [PubMed] [Google Scholar]
- Stevens V. J., Vlassara H., Abati A., Cerami A. Nonenzymatic glycosylation of hemoglobin. J Biol Chem. 1977 May 10;252(9):2998–3002. [PubMed] [Google Scholar]
- Turner J. L., Bierman E. L. Effects of glucose and sorbitol on proliferation of cultured human skin fibroblasts and arterial smooth-muscle cells. Diabetes. 1978 May;27(5):583–588. doi: 10.2337/diab.27.5.583. [DOI] [PubMed] [Google Scholar]
- West K. M., Erdreich L. J., Stober J. A. A detailed study of risk factors for retinopathy and nephropathy in diabetes. Diabetes. 1980 Jul;29(7):501–508. doi: 10.2337/diab.29.7.501. [DOI] [PubMed] [Google Scholar]