Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Feb;77(2):348–354. doi: 10.1172/JCI112311

Mechanism of chloride secretion induced by carbachol in a colonic epithelial cell line.

K Dharmsathaphorn, S J Pandol
PMCID: PMC423353  PMID: 3003156

Abstract

Serosal application of carbachol to T84 cell monolayers mounted in an Ussing chamber caused an immediate increase in short circuit current (Isc) that peaked within 5 min and declined rapidly thereafter, although a small increase in Isc persisted for approximately 30 min. The increase in Isc was detectable with 1 microM carbachol; half-maximal with 10 microM carbachol; and maximal with 100 microM carbachol. Unidirectional Na+ and Cl- flux measurements indicated that the increase in Isc was due to net Cl- secretion. Carbachol did not alter cellular cAMP, but caused a transient increase in free cytosolic Ca2+ ([Ca2+]i) from 117 +/- 7 nM to 160 +/- 15 nM. The carbachol-induced increase in Isc was potentiated by either prostaglandin E1 (PGE1) or vasoactive intestinal polypeptide (VIP), agents that act by increasing cAMP. Measurements of cAMP and [Ca2+]i indicated that the potentiated response was not due to changes in these second messengers. Studies of the effects of these agents on ion transport pathways indicated that carbachol, PGE1, or VIP each increased basolateral K+ efflux by activating two different K+ transport pathways on the basolateral membrane. The pathway activated by carbachol was not sensitive to barium, while that activated by PGE1 or VIP was; furthermore, their action on K+ efflux are additive. Our study indicates that carbachol causes Cl- secretion, and that this action may result from its ability to increase [Ca2+]i and basolateral K+ efflux. Carbachol's effect on Cl- secretion is greatly augmented in the presence of VIP or PGE1, which open a cAMP-sensitive Cl- channel on the apical membrane, accounting for a potentiated response.

Full text

PDF
348

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cartwright C. A., McRoberts J. A., Mandel K. G., Dharmsathaphorn K. Synergistic action of cyclic adenosine monophosphate- and calcium-mediated chloride secretion in a colonic epithelial cell line. J Clin Invest. 1985 Nov;76(5):1837–1842. doi: 10.1172/JCI112176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dharmsathaphorn K., Mandel K. G., Masui H., McRoberts J. A. Vasoactive intestinal polypeptide-induced chloride secretion by a colonic epithelial cell line. Direct participation of a basolaterally localized Na+,K+,Cl- cotransport system. J Clin Invest. 1985 Feb;75(2):462–471. doi: 10.1172/JCI111721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dharmsathaphorn K., McRoberts J. A., Mandel K. G., Tisdale L. D., Masui H. A human colonic tumor cell line that maintains vectorial electrolyte transport. Am J Physiol. 1984 Feb;246(2 Pt 1):G204–G208. doi: 10.1152/ajpgi.1984.246.2.G204. [DOI] [PubMed] [Google Scholar]
  4. Hesketh T. R., Smith G. A., Moore J. P., Taylor M. V., Metcalfe J. C. Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes. J Biol Chem. 1983 Apr 25;258(8):4876–4882. [PubMed] [Google Scholar]
  5. Hubel K. A. Intestinal ion transport: effect of norepinephrine, pilocarpine, and atropine. Am J Physiol. 1976 Jul;231(1):252–257. doi: 10.1152/ajplegacy.1976.231.1.252. [DOI] [PubMed] [Google Scholar]
  6. Isaacs P. E., Corbett C. L., Riley A. K., Hawker P. C., Turnberg L. A. In vitro behavior of human intestinal mucosa. The influence of acetyl choline on ion transport. J Clin Invest. 1976 Sep;58(3):535–542. doi: 10.1172/JCI108498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Madara J. L., Dharmsathaphorn K. Occluding junction structure-function relationships in a cultured epithelial monolayer. J Cell Biol. 1985 Dec;101(6):2124–2133. doi: 10.1083/jcb.101.6.2124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McRoberts J. A., Beuerlein G., Dharmsathaphorn K. Cyclic AMP and Ca2+-activated K+ transport in a human colonic epithelial cell line. J Biol Chem. 1985 Nov 15;260(26):14163–14172. [PubMed] [Google Scholar]
  9. Ochs D. L., Korenbrot J. I., Williams J. A. Intracellular free calcium concentrations in isolated pancreatic acini; effects of secretagogues. Biochem Biophys Res Commun. 1983 Nov 30;117(1):122–128. doi: 10.1016/0006-291x(83)91549-8. [DOI] [PubMed] [Google Scholar]
  10. Paton W. D., Zar M. A. The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips. J Physiol. 1968 Jan;194(1):13–33. doi: 10.1113/jphysiol.1968.sp008392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rampton D. S., Sladen G. E., Youlten L. J. Rectal mucosal prostaglandin E2 release and its relation to disease activity, electrical potential difference, and treatment in ulcerative colitis. Gut. 1980 Jul;21(7):591–596. doi: 10.1136/gut.21.7.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rink R. J., Sanchez A., Grinstein S., Rothstein A. Volume restoration in osmotically swollen lymphocytes does not involve changes in free Ca2+ concentration. Biochim Biophys Acta. 1983 Jul 14;762(4):593–596. doi: 10.1016/0167-4889(83)90064-2. [DOI] [PubMed] [Google Scholar]
  13. Rink T. J., Tsien R. Y. Cytoplasmic free [Ca2+] in very small intact cells. Biochem Soc Trans. 1982 Aug;10(4):209–209. doi: 10.1042/bst0100209. [DOI] [PubMed] [Google Scholar]
  14. Sharon P., Ligumsky M., Rachmilewitz D., Zor U. Role of prostaglandins in ulcerative colitis. Enhanced production during active disease and inhibition by sulfasalazine. Gastroenterology. 1978 Oct;75(4):638–640. [PubMed] [Google Scholar]
  15. Shorofsky S. R., Field M., Fozzard H. A. The cellular mechanism of active chloride secretion in vertebrate epithelia: studies in intestine and trachea. Philos Trans R Soc Lond B Biol Sci. 1982 Dec 1;299(1097):597–607. doi: 10.1098/rstb.1982.0155. [DOI] [PubMed] [Google Scholar]
  16. Smith P. L., Frizzell R. A. Chloride secretion by canine tracheal epithelium: IV. Basolateral membrane K permeability parallels secretion rate. J Membr Biol. 1984;77(3):187–199. doi: 10.1007/BF01870568. [DOI] [PubMed] [Google Scholar]
  17. Tapper E. J., Powell D. W., Morris S. M. Cholinergic-adrenergic interactions on intestinal ion transport. Am J Physiol. 1978 Oct;235(4):E402–E409. doi: 10.1152/ajpendo.1978.235.4.E402. [DOI] [PubMed] [Google Scholar]
  18. Tsien R. Y. A non-disruptive technique for loading calcium buffers and indicators into cells. Nature. 1981 Apr 9;290(5806):527–528. doi: 10.1038/290527a0. [DOI] [PubMed] [Google Scholar]
  19. Vaillant C., Dimaline R., Dockray G. J. The distribution and cellular origin of vasoactive intestinal polypeptide in the avian gastrointestinal tract and pancreas. Cell Tissue Res. 1980;211(3):511–523. doi: 10.1007/BF00234405. [DOI] [PubMed] [Google Scholar]
  20. Weymer A., Huott P., Liu W., McRoberts J. A., Dharmsathaphorn K. Chloride secretory mechanism induced by prostaglandin E1 in a colonic epithelial cell line. J Clin Invest. 1985 Nov;76(5):1828–1836. doi: 10.1172/JCI112175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zimmerman T. W., Binder H. J. Effect of tetrodotoxin on cholinergic agonist-mediated colonic electrolyte transport. Am J Physiol. 1983 Apr;244(4):G386–G391. doi: 10.1152/ajpgi.1983.244.4.G386. [DOI] [PubMed] [Google Scholar]
  22. Zimmerman T. W., Dobbins J. W., Binder H. J. Mechanism of cholinergic regulation of electrolyte transport in rat colon in vitro. Am J Physiol. 1982 Feb;242(2):G116–G123. doi: 10.1152/ajpgi.1982.242.2.G116. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES