Abstract
Human monocyte-derived macrophages (HMM) play a key role in the formation of atherosclerotic plaques by accumulating cholesteryl ester (CE) to become foam cells. HMM have receptors for native low density lipoprotein (LDL) and acetylated-LDL (ALDL), and uptake of ALDL can promote substantial cellular CE accumulation. Furthermore, macrophages specifically and saturably bind glucocorticoids, which in turn modulate numerous macrophage functions. Preincubating HMM in dexamethasone-inhibited LDL degradation (230 +/- 12 vs. 515 +/- 21 ng/mg cell protein X 18 h, P less than 0.001) but stimulated ALDL degradation (5.3 +/- 0.5 vs. 2.5 +/- 0.3 micrograms/mg X 18 h, P less than 0.01). These effects were time- and dose-dependent, occurring maximally by 24 h and with 2.5 X 10(-8) M dexamethasone. Dexamethasone increased the maximum velocity for ALDL degradation (16.2 vs. 12.0 micrograms/mg X 18 h, P less than 0.01) without changing the apparent Michaelis constant. Progesterone, 11 alpha-epicortisol, and 17 alpha-OH progesterone (a competitive antagonist of the glucocorticoid receptor) had no effect on HMM ALDL degradation, but 17 alpha-OH progesterone abolished the stimulatory action of dexamethasone. In he presence of ALDL, incorporation of [14C]oleic acid into CE was enhanced over fourfold by dexamethasone (4015 +/- 586 vs. 943 +/- 91 cpm/mg X 2 h, P less than 0.01), and HMM incubated with ALDL and dexamethasone accumulated more free cholesterol (34.6 +/- 1.9 vs. 26.2 +/- 0.8 micrograms/mg, P less than 0.02) and CE (32.8 +/- 2.3 vs. 14.8 +/- 0.8 micrograms/mg, P less than 0.002) than did macrophages without dexamethasone. In cultured human umbilical vein endothelial cells, dexamethasone did not change ALDL degradation, but reduced LDL degradation by 30% (P less than 0.001). In summary, dexamethasone inhibits LDL receptor activity by both macrophages and endothelial cells, but stimulates ALDL receptor activity only in macrophages. These observations provide evidence for the regulation of macrophage endocytic receptors by glucocorticoid hormones.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker J. B., Barsh G. S., Carney D. H., Cunningham D. D. Dexamethasone modulates binding and action of epidermal growth factor in serum-free cell culture. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1882–1886. doi: 10.1073/pnas.75.4.1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Basu S. K., Goldstein J. L., Anderson G. W., Brown M. S. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3178–3182. doi: 10.1073/pnas.73.9.3178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Basu S. K., Goldstein J. L., Anderson R. G., Brown M. S. Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts. Cell. 1981 May;24(2):493–502. doi: 10.1016/0092-8674(81)90340-8. [DOI] [PubMed] [Google Scholar]
- Booyse F. M., Quarfoot A. J., Chediak J., Stemerman M. B., Maciag T. Characterization and properties of cultured human von Willebrand umbilical vein endothelial cells. Blood. 1981 Oct;58(4):788–796. [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L., Krieger M., Ho Y. K., Anderson R. G. Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins. J Cell Biol. 1979 Sep;82(3):597–613. doi: 10.1083/jcb.82.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223–261. doi: 10.1146/annurev.bi.52.070183.001255. [DOI] [PubMed] [Google Scholar]
- Brown M. S., Ho Y. K., Goldstein J. L. The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J Biol Chem. 1980 Oct 10;255(19):9344–9352. [PubMed] [Google Scholar]
- Chait A., Bierman E. L., Albers J. J. Low-density lipoprotein receptor activity in cultured human skin fibroblasts. Mechanism of insulin-induced stimulation. J Clin Invest. 1979 Nov;64(5):1309–1319. doi: 10.1172/JCI109587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chait A., Henze K., Mazzone T., Jensen M., Hammond W. Low density lipoprotein receptor activity in freshly isolated human blood monocytes and lymphocytes. Metabolism. 1982 Jul;31(7):721–727. doi: 10.1016/0026-0495(82)90204-9. [DOI] [PubMed] [Google Scholar]
- Chait A., Mazzone T. A secretory product of human monocyte-derived macrophages stimulates low density lipoprotein receptor activity in arterial smooth muscle cells and skin fibroblasts. Arteriosclerosis. 1982 Mar-Apr;2(2):134–141. doi: 10.1161/01.atv.2.2.134. [DOI] [PubMed] [Google Scholar]
- Chait A., Ross R., Albers J. J., Bierman E. L. Platelet-derived growth factor stimulates activity of low density lipoprotein receptors. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4084–4088. doi: 10.1073/pnas.77.7.4084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dana S. E., Brown M. S., Goldstein J. L. Specific, saturable, and high affinity binding of 125I-low density lipoprotein to glass beads. Biochem Biophys Res Commun. 1977 Feb 21;74(4):1369–1376. doi: 10.1016/0006-291x(77)90593-9. [DOI] [PubMed] [Google Scholar]
- Fogelman A. M., Haberland M. E., Seager J., Hokom M., Edwards P. A. Factors regulating the activities of the low density lipoprotein receptor and the scavenger receptor on human monocyte-macrophages. J Lipid Res. 1981 Sep;22(7):1131–1141. [PubMed] [Google Scholar]
- Fogelman A. M., Seager J., Haberland M. E., Hokom M., Tanaka R., Edwards P. A. Lymphocyte-conditioned medium protects human monocyte-macrophages from cholesteryl ester accumulation. Proc Natl Acad Sci U S A. 1982 Feb;79(3):922–926. doi: 10.1073/pnas.79.3.922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fogelman A. M., Shechter I., Seager J., Hokom M., Child J. S., Edwards P. A. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2214–2218. doi: 10.1073/pnas.77.4.2214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerrity R. G. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol. 1981 May;103(2):181–190. [PMC free article] [PubMed] [Google Scholar]
- Goldstein J. L., Ho Y. K., Basu S. K., Brown M. S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A. 1979 Jan;76(1):333–337. doi: 10.1073/pnas.76.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henriksen T., Mahoney E. M., Steinberg D. Enhanced macrophage degradation of biologically modified low density lipoprotein. Arteriosclerosis. 1983 Mar-Apr;3(2):149–159. doi: 10.1161/01.atv.3.2.149. [DOI] [PubMed] [Google Scholar]
- Henriksen T., Mahoney E. M., Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6499–6503. doi: 10.1073/pnas.78.10.6499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henze K., Chait A., Albers J. J., Bierman E. L. Hydrocortisone decreases the internalization of low density lipoprotein in cultured human fibroblasts and arterial smooth muscle cells. Eur J Clin Invest. 1983 Apr;13(2):171–177. doi: 10.1111/j.1365-2362.1983.tb00083.x. [DOI] [PubMed] [Google Scholar]
- Ho Y. K., Brown S., Bilheimer D. W., Goldstein J. L. Regulation of low density lipoprotein receptor activity in freshly isolated human lymphocytes. J Clin Invest. 1976 Dec;58(6):1465–1474. doi: 10.1172/JCI108603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knutson V. P., Ronnett G. V., Lane M. D. Control of insulin receptor level in 3T3 cells: effect of insulin-induced down-regulation and dexamethasone-induced up-regulation on rate of receptor inactivation. Proc Natl Acad Sci U S A. 1982 May;79(9):2822–2826. doi: 10.1073/pnas.79.9.2822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Langer T., Strober W., Levy R. I. The metabolism of low density lipoprotein in familial type II hyperlipoproteinemia. J Clin Invest. 1972 Jun;51(6):1528–1536. doi: 10.1172/JCI106949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leitman D. C., Benson S. C., Johnson L. K. Glucocorticoids stimulate collagen and noncollagen protein synthesis in cultured vascular smooth muscle cells. J Cell Biol. 1984 Feb;98(2):541–549. doi: 10.1083/jcb.98.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahley R. W., Innerarity T. L. Lipoprotein receptors and cholesterol homeostasis. Biochim Biophys Acta. 1983 May 24;737(2):197–222. doi: 10.1016/0304-4157(83)90001-1. [DOI] [PubMed] [Google Scholar]
- Mazzone T., Chait A. Autoregulation of the modified low density lipoprotein receptor in human monocyte-derived macrophages. Arteriosclerosis. 1982 Nov-Dec;2(6):487–492. doi: 10.1161/01.atv.2.6.487. [DOI] [PubMed] [Google Scholar]
- Ross R. George Lyman Duff Memorial Lecture. Atherosclerosis: a problem of the biology of arterial wall cells and their interactions with blood components. Arteriosclerosis. 1981 Sep-Oct;1(5):293–311. doi: 10.1161/01.atv.1.5.293. [DOI] [PubMed] [Google Scholar]
- Salhanick A. I., Krupp M. N., Amatruda J. M. Dexamethasone stimulates insulin receptor synthesis in cultured rat hepatocytes. J Biol Chem. 1983 Dec 10;258(23):14130–14135. [PubMed] [Google Scholar]
- Schaffner T., Taylor K., Bartucci E. J., Fischer-Dzoga K., Beeson J. H., Glagov S., Wissler R. W. Arterial foam cells with distinctive immunomorphologic and histochemical features of macrophages. Am J Pathol. 1980 Jul;100(1):57–80. [PMC free article] [PubMed] [Google Scholar]
- Schreiber A. D., Parsons J., McDermott P., Cooper R. A. Effect of corticosteroids on the human monocyte IgG and complement receptors. J Clin Invest. 1975 Nov;56(5):1189–1197. doi: 10.1172/JCI108196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shechter I., Fogelman A. M., Haberland M. E., Seager J., Hokom M., Edwards P. A. The metabolism of native and malondialdehyde-altered low density lipoproteins by human monocyte-macrophages. J Lipid Res. 1981 Jan;22(1):63–71. [PubMed] [Google Scholar]
- Shepherd V. L., Konish M. G., Stahl P. Dexamethasone increases expression of mannose receptors and decreases extracellular lysosomal enzyme accumulation in macrophages. J Biol Chem. 1985 Jan 10;260(1):160–164. [PubMed] [Google Scholar]
- Stein O., Stein Y. Bovine aortic endothelial cells display macrophage-like properties towards acetylated 125I-labelled low density lipoprotein. Biochim Biophys Acta. 1980 Dec 5;620(3):631–635. doi: 10.1016/0005-2760(80)90155-1. [DOI] [PubMed] [Google Scholar]
- Via D. P., Plant A. L., Craig I. F., Gotto A. M., Jr, Smith L. C. Metabolism of normal and modified low-density lipoproteins by macrophage cell lines of murine and human origin. Biochim Biophys Acta. 1985 Mar 6;833(3):417–428. doi: 10.1016/0005-2760(85)90099-2. [DOI] [PubMed] [Google Scholar]
- Werb Z. Biochemical actions of glucocorticoids on macrophages in culture. Specific inhibition of elastase, collagenase, and plasminogen activator secretion and effects on other metabolic functions. J Exp Med. 1978 Jun 1;147(6):1695–1712. doi: 10.1084/jem.147.6.1695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Werb Z., Foley R., Munck A. Interaction of glucocorticoids with macrophages. Identification of glucocorticoid receptors in monocytes and macrophages. J Exp Med. 1978 Jun 1;147(6):1684–1694. doi: 10.1084/jem.147.6.1684. [DOI] [PMC free article] [PubMed] [Google Scholar]
